\(\int \frac {1}{x^{7/2} (a+b x^2)^2} \, dx\) [303]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 15, antiderivative size = 190 \[ \int \frac {1}{x^{7/2} \left (a+b x^2\right )^2} \, dx=-\frac {9}{10 a^2 x^{5/2}}+\frac {9 b}{2 a^3 \sqrt {x}}+\frac {1}{2 a x^{5/2} \left (a+b x^2\right )}-\frac {9 b^{5/4} \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{4 \sqrt {2} a^{13/4}}+\frac {9 b^{5/4} \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{4 \sqrt {2} a^{13/4}}-\frac {9 b^{5/4} \text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}}{\sqrt {a}+\sqrt {b} x}\right )}{4 \sqrt {2} a^{13/4}} \] Output:

-9/10/a^2/x^(5/2)+9/2*b/a^3/x^(1/2)+1/2/a/x^(5/2)/(b*x^2+a)-9/8*b^(5/4)*ar 
ctan(1-2^(1/2)*b^(1/4)*x^(1/2)/a^(1/4))*2^(1/2)/a^(13/4)+9/8*b^(5/4)*arcta 
n(1+2^(1/2)*b^(1/4)*x^(1/2)/a^(1/4))*2^(1/2)/a^(13/4)-9/8*b^(5/4)*arctanh( 
2^(1/2)*a^(1/4)*b^(1/4)*x^(1/2)/(a^(1/2)+b^(1/2)*x))*2^(1/2)/a^(13/4)
 

Mathematica [A] (verified)

Time = 0.27 (sec) , antiderivative size = 149, normalized size of antiderivative = 0.78 \[ \int \frac {1}{x^{7/2} \left (a+b x^2\right )^2} \, dx=\frac {\frac {4 \sqrt [4]{a} \left (-4 a^2+36 a b x^2+45 b^2 x^4\right )}{x^{5/2} \left (a+b x^2\right )}-45 \sqrt {2} b^{5/4} \arctan \left (\frac {\sqrt {a}-\sqrt {b} x}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}}\right )-45 \sqrt {2} b^{5/4} \text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}}{\sqrt {a}+\sqrt {b} x}\right )}{40 a^{13/4}} \] Input:

Integrate[1/(x^(7/2)*(a + b*x^2)^2),x]
 

Output:

((4*a^(1/4)*(-4*a^2 + 36*a*b*x^2 + 45*b^2*x^4))/(x^(5/2)*(a + b*x^2)) - 45 
*Sqrt[2]*b^(5/4)*ArcTan[(Sqrt[a] - Sqrt[b]*x)/(Sqrt[2]*a^(1/4)*b^(1/4)*Sqr 
t[x])] - 45*Sqrt[2]*b^(5/4)*ArcTanh[(Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x])/(Sqr 
t[a] + Sqrt[b]*x)])/(40*a^(13/4))
 

Rubi [A] (verified)

Time = 0.42 (sec) , antiderivative size = 277, normalized size of antiderivative = 1.46, number of steps used = 13, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.800, Rules used = {253, 264, 264, 266, 826, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{x^{7/2} \left (a+b x^2\right )^2} \, dx\)

\(\Big \downarrow \) 253

\(\displaystyle \frac {9 \int \frac {1}{x^{7/2} \left (b x^2+a\right )}dx}{4 a}+\frac {1}{2 a x^{5/2} \left (a+b x^2\right )}\)

\(\Big \downarrow \) 264

\(\displaystyle \frac {9 \left (-\frac {b \int \frac {1}{x^{3/2} \left (b x^2+a\right )}dx}{a}-\frac {2}{5 a x^{5/2}}\right )}{4 a}+\frac {1}{2 a x^{5/2} \left (a+b x^2\right )}\)

\(\Big \downarrow \) 264

\(\displaystyle \frac {9 \left (-\frac {b \left (-\frac {b \int \frac {\sqrt {x}}{b x^2+a}dx}{a}-\frac {2}{a \sqrt {x}}\right )}{a}-\frac {2}{5 a x^{5/2}}\right )}{4 a}+\frac {1}{2 a x^{5/2} \left (a+b x^2\right )}\)

\(\Big \downarrow \) 266

\(\displaystyle \frac {9 \left (-\frac {b \left (-\frac {2 b \int \frac {x}{b x^2+a}d\sqrt {x}}{a}-\frac {2}{a \sqrt {x}}\right )}{a}-\frac {2}{5 a x^{5/2}}\right )}{4 a}+\frac {1}{2 a x^{5/2} \left (a+b x^2\right )}\)

\(\Big \downarrow \) 826

\(\displaystyle \frac {9 \left (-\frac {b \left (-\frac {2 b \left (\frac {\int \frac {\sqrt {b} x+\sqrt {a}}{b x^2+a}d\sqrt {x}}{2 \sqrt {b}}-\frac {\int \frac {\sqrt {a}-\sqrt {b} x}{b x^2+a}d\sqrt {x}}{2 \sqrt {b}}\right )}{a}-\frac {2}{a \sqrt {x}}\right )}{a}-\frac {2}{5 a x^{5/2}}\right )}{4 a}+\frac {1}{2 a x^{5/2} \left (a+b x^2\right )}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {9 \left (-\frac {b \left (-\frac {2 b \left (\frac {\frac {\int \frac {1}{x-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}}d\sqrt {x}}{2 \sqrt {b}}+\frac {\int \frac {1}{x+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}}d\sqrt {x}}{2 \sqrt {b}}}{2 \sqrt {b}}-\frac {\int \frac {\sqrt {a}-\sqrt {b} x}{b x^2+a}d\sqrt {x}}{2 \sqrt {b}}\right )}{a}-\frac {2}{a \sqrt {x}}\right )}{a}-\frac {2}{5 a x^{5/2}}\right )}{4 a}+\frac {1}{2 a x^{5/2} \left (a+b x^2\right )}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {9 \left (-\frac {b \left (-\frac {2 b \left (\frac {\frac {\int \frac {1}{-x-1}d\left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\int \frac {1}{-x-1}d\left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}-\frac {\int \frac {\sqrt {a}-\sqrt {b} x}{b x^2+a}d\sqrt {x}}{2 \sqrt {b}}\right )}{a}-\frac {2}{a \sqrt {x}}\right )}{a}-\frac {2}{5 a x^{5/2}}\right )}{4 a}+\frac {1}{2 a x^{5/2} \left (a+b x^2\right )}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {9 \left (-\frac {b \left (-\frac {2 b \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}-\frac {\int \frac {\sqrt {a}-\sqrt {b} x}{b x^2+a}d\sqrt {x}}{2 \sqrt {b}}\right )}{a}-\frac {2}{a \sqrt {x}}\right )}{a}-\frac {2}{5 a x^{5/2}}\right )}{4 a}+\frac {1}{2 a x^{5/2} \left (a+b x^2\right )}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {9 \left (-\frac {b \left (-\frac {2 b \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}-\frac {-\frac {\int -\frac {\sqrt {2} \sqrt [4]{a}-2 \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{b} \left (x-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {2} \sqrt [4]{b} \sqrt {x}+\sqrt [4]{a}\right )}{\sqrt [4]{b} \left (x+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}\right )}{a}-\frac {2}{a \sqrt {x}}\right )}{a}-\frac {2}{5 a x^{5/2}}\right )}{4 a}+\frac {1}{2 a x^{5/2} \left (a+b x^2\right )}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {9 \left (-\frac {b \left (-\frac {2 b \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}-\frac {\frac {\int \frac {\sqrt {2} \sqrt [4]{a}-2 \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{b} \left (x-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {2} \sqrt [4]{b} \sqrt {x}+\sqrt [4]{a}\right )}{\sqrt [4]{b} \left (x+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}\right )}{a}-\frac {2}{a \sqrt {x}}\right )}{a}-\frac {2}{5 a x^{5/2}}\right )}{4 a}+\frac {1}{2 a x^{5/2} \left (a+b x^2\right )}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {9 \left (-\frac {b \left (-\frac {2 b \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}-\frac {\frac {\int \frac {\sqrt {2} \sqrt [4]{a}-2 \sqrt [4]{b} \sqrt {x}}{x-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt {b}}+\frac {\int \frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}+\sqrt [4]{a}}{x+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}}d\sqrt {x}}{2 \sqrt [4]{a} \sqrt {b}}}{2 \sqrt {b}}\right )}{a}-\frac {2}{a \sqrt {x}}\right )}{a}-\frac {2}{5 a x^{5/2}}\right )}{4 a}+\frac {1}{2 a x^{5/2} \left (a+b x^2\right )}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {9 \left (-\frac {b \left (-\frac {2 b \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}-\frac {\frac {\log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {a}+\sqrt {b} x\right )}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {a}+\sqrt {b} x\right )}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}\right )}{a}-\frac {2}{a \sqrt {x}}\right )}{a}-\frac {2}{5 a x^{5/2}}\right )}{4 a}+\frac {1}{2 a x^{5/2} \left (a+b x^2\right )}\)

Input:

Int[1/(x^(7/2)*(a + b*x^2)^2),x]
 

Output:

1/(2*a*x^(5/2)*(a + b*x^2)) + (9*(-2/(5*a*x^(5/2)) - (b*(-2/(a*Sqrt[x]) - 
(2*b*((-(ArcTan[1 - (Sqrt[2]*b^(1/4)*Sqrt[x])/a^(1/4)]/(Sqrt[2]*a^(1/4)*b^ 
(1/4))) + ArcTan[1 + (Sqrt[2]*b^(1/4)*Sqrt[x])/a^(1/4)]/(Sqrt[2]*a^(1/4)*b 
^(1/4)))/(2*Sqrt[b]) - (-1/2*Log[Sqrt[a] - Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x] 
 + Sqrt[b]*x]/(Sqrt[2]*a^(1/4)*b^(1/4)) + Log[Sqrt[a] + Sqrt[2]*a^(1/4)*b^ 
(1/4)*Sqrt[x] + Sqrt[b]*x]/(2*Sqrt[2]*a^(1/4)*b^(1/4)))/(2*Sqrt[b])))/a))/ 
a))/(4*a)
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 253
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-(c*x 
)^(m + 1))*((a + b*x^2)^(p + 1)/(2*a*c*(p + 1))), x] + Simp[(m + 2*p + 3)/( 
2*a*(p + 1))   Int[(c*x)^m*(a + b*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, m 
}, x] && LtQ[p, -1] && IntBinomialQ[a, b, c, 2, m, p, x]
 

rule 264
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(c*x)^( 
m + 1)*((a + b*x^2)^(p + 1)/(a*c*(m + 1))), x] - Simp[b*((m + 2*p + 3)/(a*c 
^2*(m + 1)))   Int[(c*x)^(m + 2)*(a + b*x^2)^p, x], x] /; FreeQ[{a, b, c, p 
}, x] && LtQ[m, -1] && IntBinomialQ[a, b, c, 2, m, p, x]
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 826
Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 
2]], s = Denominator[Rt[a/b, 2]]}, Simp[1/(2*s)   Int[(r + s*x^2)/(a + b*x^ 
4), x], x] - Simp[1/(2*s)   Int[(r - s*x^2)/(a + b*x^4), x], x]] /; FreeQ[{ 
a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] 
 && AtomQ[SplitProduct[SumBaseQ, b]]))
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 
Maple [A] (verified)

Time = 0.30 (sec) , antiderivative size = 145, normalized size of antiderivative = 0.76

method result size
risch \(-\frac {2 \left (-10 b \,x^{2}+a \right )}{5 a^{3} x^{\frac {5}{2}}}+\frac {b^{2} \left (\frac {x^{\frac {3}{2}}}{2 b \,x^{2}+2 a}+\frac {9 \sqrt {2}\, \left (\ln \left (\frac {x -\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}{x +\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}-1\right )\right )}{16 b \left (\frac {a}{b}\right )^{\frac {1}{4}}}\right )}{a^{3}}\) \(145\)
derivativedivides \(\frac {2 b^{2} \left (\frac {x^{\frac {3}{2}}}{4 b \,x^{2}+4 a}+\frac {9 \sqrt {2}\, \left (\ln \left (\frac {x -\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}{x +\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}-1\right )\right )}{32 b \left (\frac {a}{b}\right )^{\frac {1}{4}}}\right )}{a^{3}}-\frac {2}{5 a^{2} x^{\frac {5}{2}}}+\frac {4 b}{a^{3} \sqrt {x}}\) \(147\)
default \(\frac {2 b^{2} \left (\frac {x^{\frac {3}{2}}}{4 b \,x^{2}+4 a}+\frac {9 \sqrt {2}\, \left (\ln \left (\frac {x -\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}{x +\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}-1\right )\right )}{32 b \left (\frac {a}{b}\right )^{\frac {1}{4}}}\right )}{a^{3}}-\frac {2}{5 a^{2} x^{\frac {5}{2}}}+\frac {4 b}{a^{3} \sqrt {x}}\) \(147\)

Input:

int(1/x^(7/2)/(b*x^2+a)^2,x,method=_RETURNVERBOSE)
 

Output:

-2/5*(-10*b*x^2+a)/a^3/x^(5/2)+1/a^3*b^2*(1/2*x^(3/2)/(b*x^2+a)+9/16/b/(a/ 
b)^(1/4)*2^(1/2)*(ln((x-(a/b)^(1/4)*x^(1/2)*2^(1/2)+(a/b)^(1/2))/(x+(a/b)^ 
(1/4)*x^(1/2)*2^(1/2)+(a/b)^(1/2)))+2*arctan(2^(1/2)/(a/b)^(1/4)*x^(1/2)+1 
)+2*arctan(2^(1/2)/(a/b)^(1/4)*x^(1/2)-1)))
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.08 (sec) , antiderivative size = 263, normalized size of antiderivative = 1.38 \[ \int \frac {1}{x^{7/2} \left (a+b x^2\right )^2} \, dx=\frac {45 \, {\left (a^{3} b x^{5} + a^{4} x^{3}\right )} \left (-\frac {b^{5}}{a^{13}}\right )^{\frac {1}{4}} \log \left (729 \, a^{10} \left (-\frac {b^{5}}{a^{13}}\right )^{\frac {3}{4}} + 729 \, b^{4} \sqrt {x}\right ) - 45 \, {\left (i \, a^{3} b x^{5} + i \, a^{4} x^{3}\right )} \left (-\frac {b^{5}}{a^{13}}\right )^{\frac {1}{4}} \log \left (729 i \, a^{10} \left (-\frac {b^{5}}{a^{13}}\right )^{\frac {3}{4}} + 729 \, b^{4} \sqrt {x}\right ) - 45 \, {\left (-i \, a^{3} b x^{5} - i \, a^{4} x^{3}\right )} \left (-\frac {b^{5}}{a^{13}}\right )^{\frac {1}{4}} \log \left (-729 i \, a^{10} \left (-\frac {b^{5}}{a^{13}}\right )^{\frac {3}{4}} + 729 \, b^{4} \sqrt {x}\right ) - 45 \, {\left (a^{3} b x^{5} + a^{4} x^{3}\right )} \left (-\frac {b^{5}}{a^{13}}\right )^{\frac {1}{4}} \log \left (-729 \, a^{10} \left (-\frac {b^{5}}{a^{13}}\right )^{\frac {3}{4}} + 729 \, b^{4} \sqrt {x}\right ) + 4 \, {\left (45 \, b^{2} x^{4} + 36 \, a b x^{2} - 4 \, a^{2}\right )} \sqrt {x}}{40 \, {\left (a^{3} b x^{5} + a^{4} x^{3}\right )}} \] Input:

integrate(1/x^(7/2)/(b*x^2+a)^2,x, algorithm="fricas")
 

Output:

1/40*(45*(a^3*b*x^5 + a^4*x^3)*(-b^5/a^13)^(1/4)*log(729*a^10*(-b^5/a^13)^ 
(3/4) + 729*b^4*sqrt(x)) - 45*(I*a^3*b*x^5 + I*a^4*x^3)*(-b^5/a^13)^(1/4)* 
log(729*I*a^10*(-b^5/a^13)^(3/4) + 729*b^4*sqrt(x)) - 45*(-I*a^3*b*x^5 - I 
*a^4*x^3)*(-b^5/a^13)^(1/4)*log(-729*I*a^10*(-b^5/a^13)^(3/4) + 729*b^4*sq 
rt(x)) - 45*(a^3*b*x^5 + a^4*x^3)*(-b^5/a^13)^(1/4)*log(-729*a^10*(-b^5/a^ 
13)^(3/4) + 729*b^4*sqrt(x)) + 4*(45*b^2*x^4 + 36*a*b*x^2 - 4*a^2)*sqrt(x) 
)/(a^3*b*x^5 + a^4*x^3)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {1}{x^{7/2} \left (a+b x^2\right )^2} \, dx=\text {Timed out} \] Input:

integrate(1/x**(7/2)/(b*x**2+a)**2,x)
 

Output:

Timed out
 

Maxima [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 221, normalized size of antiderivative = 1.16 \[ \int \frac {1}{x^{7/2} \left (a+b x^2\right )^2} \, dx=\frac {45 \, b^{2} x^{4} + 36 \, a b x^{2} - 4 \, a^{2}}{10 \, {\left (a^{3} b x^{\frac {9}{2}} + a^{4} x^{\frac {5}{2}}\right )}} + \frac {9 \, b^{2} {\left (\frac {2 \, \sqrt {2} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} + 2 \, \sqrt {b} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b}}}\right )}{\sqrt {\sqrt {a} \sqrt {b}} \sqrt {b}} + \frac {2 \, \sqrt {2} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} - 2 \, \sqrt {b} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b}}}\right )}{\sqrt {\sqrt {a} \sqrt {b}} \sqrt {b}} - \frac {\sqrt {2} \log \left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {x} + \sqrt {b} x + \sqrt {a}\right )}{a^{\frac {1}{4}} b^{\frac {3}{4}}} + \frac {\sqrt {2} \log \left (-\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {x} + \sqrt {b} x + \sqrt {a}\right )}{a^{\frac {1}{4}} b^{\frac {3}{4}}}\right )}}{16 \, a^{3}} \] Input:

integrate(1/x^(7/2)/(b*x^2+a)^2,x, algorithm="maxima")
 

Output:

1/10*(45*b^2*x^4 + 36*a*b*x^2 - 4*a^2)/(a^3*b*x^(9/2) + a^4*x^(5/2)) + 9/1 
6*b^2*(2*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2)*a^(1/4)*b^(1/4) + 2*sqrt(b)*s 
qrt(x))/sqrt(sqrt(a)*sqrt(b)))/(sqrt(sqrt(a)*sqrt(b))*sqrt(b)) + 2*sqrt(2) 
*arctan(-1/2*sqrt(2)*(sqrt(2)*a^(1/4)*b^(1/4) - 2*sqrt(b)*sqrt(x))/sqrt(sq 
rt(a)*sqrt(b)))/(sqrt(sqrt(a)*sqrt(b))*sqrt(b)) - sqrt(2)*log(sqrt(2)*a^(1 
/4)*b^(1/4)*sqrt(x) + sqrt(b)*x + sqrt(a))/(a^(1/4)*b^(3/4)) + sqrt(2)*log 
(-sqrt(2)*a^(1/4)*b^(1/4)*sqrt(x) + sqrt(b)*x + sqrt(a))/(a^(1/4)*b^(3/4)) 
)/a^3
 

Giac [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 220, normalized size of antiderivative = 1.16 \[ \int \frac {1}{x^{7/2} \left (a+b x^2\right )^2} \, dx=\frac {b^{2} x^{\frac {3}{2}}}{2 \, {\left (b x^{2} + a\right )} a^{3}} + \frac {9 \, \sqrt {2} \left (a b^{3}\right )^{\frac {3}{4}} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {a}{b}\right )^{\frac {1}{4}} + 2 \, \sqrt {x}\right )}}{2 \, \left (\frac {a}{b}\right )^{\frac {1}{4}}}\right )}{8 \, a^{4} b} + \frac {9 \, \sqrt {2} \left (a b^{3}\right )^{\frac {3}{4}} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {a}{b}\right )^{\frac {1}{4}} - 2 \, \sqrt {x}\right )}}{2 \, \left (\frac {a}{b}\right )^{\frac {1}{4}}}\right )}{8 \, a^{4} b} - \frac {9 \, \sqrt {2} \left (a b^{3}\right )^{\frac {3}{4}} \log \left (\sqrt {2} \sqrt {x} \left (\frac {a}{b}\right )^{\frac {1}{4}} + x + \sqrt {\frac {a}{b}}\right )}{16 \, a^{4} b} + \frac {9 \, \sqrt {2} \left (a b^{3}\right )^{\frac {3}{4}} \log \left (-\sqrt {2} \sqrt {x} \left (\frac {a}{b}\right )^{\frac {1}{4}} + x + \sqrt {\frac {a}{b}}\right )}{16 \, a^{4} b} + \frac {2 \, {\left (10 \, b x^{2} - a\right )}}{5 \, a^{3} x^{\frac {5}{2}}} \] Input:

integrate(1/x^(7/2)/(b*x^2+a)^2,x, algorithm="giac")
                                                                                    
                                                                                    
 

Output:

1/2*b^2*x^(3/2)/((b*x^2 + a)*a^3) + 9/8*sqrt(2)*(a*b^3)^(3/4)*arctan(1/2*s 
qrt(2)*(sqrt(2)*(a/b)^(1/4) + 2*sqrt(x))/(a/b)^(1/4))/(a^4*b) + 9/8*sqrt(2 
)*(a*b^3)^(3/4)*arctan(-1/2*sqrt(2)*(sqrt(2)*(a/b)^(1/4) - 2*sqrt(x))/(a/b 
)^(1/4))/(a^4*b) - 9/16*sqrt(2)*(a*b^3)^(3/4)*log(sqrt(2)*sqrt(x)*(a/b)^(1 
/4) + x + sqrt(a/b))/(a^4*b) + 9/16*sqrt(2)*(a*b^3)^(3/4)*log(-sqrt(2)*sqr 
t(x)*(a/b)^(1/4) + x + sqrt(a/b))/(a^4*b) + 2/5*(10*b*x^2 - a)/(a^3*x^(5/2 
))
 

Mupad [B] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 87, normalized size of antiderivative = 0.46 \[ \int \frac {1}{x^{7/2} \left (a+b x^2\right )^2} \, dx=\frac {\frac {18\,b\,x^2}{5\,a^2}-\frac {2}{5\,a}+\frac {9\,b^2\,x^4}{2\,a^3}}{a\,x^{5/2}+b\,x^{9/2}}-\frac {9\,{\left (-b\right )}^{5/4}\,\mathrm {atan}\left (\frac {{\left (-b\right )}^{1/4}\,\sqrt {x}}{a^{1/4}}\right )}{4\,a^{13/4}}+\frac {9\,{\left (-b\right )}^{5/4}\,\mathrm {atanh}\left (\frac {{\left (-b\right )}^{1/4}\,\sqrt {x}}{a^{1/4}}\right )}{4\,a^{13/4}} \] Input:

int(1/(x^(7/2)*(a + b*x^2)^2),x)
 

Output:

((18*b*x^2)/(5*a^2) - 2/(5*a) + (9*b^2*x^4)/(2*a^3))/(a*x^(5/2) + b*x^(9/2 
)) - (9*(-b)^(5/4)*atan(((-b)^(1/4)*x^(1/2))/a^(1/4)))/(4*a^(13/4)) + (9*( 
-b)^(5/4)*atanh(((-b)^(1/4)*x^(1/2))/a^(1/4)))/(4*a^(13/4))
 

Reduce [B] (verification not implemented)

Time = 0.26 (sec) , antiderivative size = 355, normalized size of antiderivative = 1.87 \[ \int \frac {1}{x^{7/2} \left (a+b x^2\right )^2} \, dx=\frac {-90 \sqrt {x}\, b^{\frac {5}{4}} a^{\frac {7}{4}} \sqrt {2}\, \mathit {atan} \left (\frac {b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}-2 \sqrt {x}\, \sqrt {b}}{b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}}\right ) x^{2}-90 \sqrt {x}\, b^{\frac {9}{4}} a^{\frac {3}{4}} \sqrt {2}\, \mathit {atan} \left (\frac {b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}-2 \sqrt {x}\, \sqrt {b}}{b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}}\right ) x^{4}+90 \sqrt {x}\, b^{\frac {5}{4}} a^{\frac {7}{4}} \sqrt {2}\, \mathit {atan} \left (\frac {b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}+2 \sqrt {x}\, \sqrt {b}}{b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}}\right ) x^{2}+90 \sqrt {x}\, b^{\frac {9}{4}} a^{\frac {3}{4}} \sqrt {2}\, \mathit {atan} \left (\frac {b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}+2 \sqrt {x}\, \sqrt {b}}{b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}}\right ) x^{4}+45 \sqrt {x}\, b^{\frac {5}{4}} a^{\frac {7}{4}} \sqrt {2}\, \mathrm {log}\left (-\sqrt {x}\, b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}+\sqrt {a}+\sqrt {b}\, x \right ) x^{2}+45 \sqrt {x}\, b^{\frac {9}{4}} a^{\frac {3}{4}} \sqrt {2}\, \mathrm {log}\left (-\sqrt {x}\, b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}+\sqrt {a}+\sqrt {b}\, x \right ) x^{4}-45 \sqrt {x}\, b^{\frac {5}{4}} a^{\frac {7}{4}} \sqrt {2}\, \mathrm {log}\left (\sqrt {x}\, b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}+\sqrt {a}+\sqrt {b}\, x \right ) x^{2}-45 \sqrt {x}\, b^{\frac {9}{4}} a^{\frac {3}{4}} \sqrt {2}\, \mathrm {log}\left (\sqrt {x}\, b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}+\sqrt {a}+\sqrt {b}\, x \right ) x^{4}-32 a^{3}+288 a^{2} b \,x^{2}+360 a \,b^{2} x^{4}}{80 \sqrt {x}\, a^{4} x^{2} \left (b \,x^{2}+a \right )} \] Input:

int(1/x^(7/2)/(b*x^2+a)^2,x)
 

Output:

( - 90*sqrt(x)*b**(1/4)*a**(3/4)*sqrt(2)*atan((b**(1/4)*a**(1/4)*sqrt(2) - 
 2*sqrt(x)*sqrt(b))/(b**(1/4)*a**(1/4)*sqrt(2)))*a*b*x**2 - 90*sqrt(x)*b** 
(1/4)*a**(3/4)*sqrt(2)*atan((b**(1/4)*a**(1/4)*sqrt(2) - 2*sqrt(x)*sqrt(b) 
)/(b**(1/4)*a**(1/4)*sqrt(2)))*b**2*x**4 + 90*sqrt(x)*b**(1/4)*a**(3/4)*sq 
rt(2)*atan((b**(1/4)*a**(1/4)*sqrt(2) + 2*sqrt(x)*sqrt(b))/(b**(1/4)*a**(1 
/4)*sqrt(2)))*a*b*x**2 + 90*sqrt(x)*b**(1/4)*a**(3/4)*sqrt(2)*atan((b**(1/ 
4)*a**(1/4)*sqrt(2) + 2*sqrt(x)*sqrt(b))/(b**(1/4)*a**(1/4)*sqrt(2)))*b**2 
*x**4 + 45*sqrt(x)*b**(1/4)*a**(3/4)*sqrt(2)*log( - sqrt(x)*b**(1/4)*a**(1 
/4)*sqrt(2) + sqrt(a) + sqrt(b)*x)*a*b*x**2 + 45*sqrt(x)*b**(1/4)*a**(3/4) 
*sqrt(2)*log( - sqrt(x)*b**(1/4)*a**(1/4)*sqrt(2) + sqrt(a) + sqrt(b)*x)*b 
**2*x**4 - 45*sqrt(x)*b**(1/4)*a**(3/4)*sqrt(2)*log(sqrt(x)*b**(1/4)*a**(1 
/4)*sqrt(2) + sqrt(a) + sqrt(b)*x)*a*b*x**2 - 45*sqrt(x)*b**(1/4)*a**(3/4) 
*sqrt(2)*log(sqrt(x)*b**(1/4)*a**(1/4)*sqrt(2) + sqrt(a) + sqrt(b)*x)*b**2 
*x**4 - 32*a**3 + 288*a**2*b*x**2 + 360*a*b**2*x**4)/(80*sqrt(x)*a**4*x**2 
*(a + b*x**2))