\(\int \frac {x^{5/2}}{(a+b x^2)^3} \, dx\) [305]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 15, antiderivative size = 189 \[ \int \frac {x^{5/2}}{\left (a+b x^2\right )^3} \, dx=-\frac {x^{3/2}}{4 b \left (a+b x^2\right )^2}+\frac {3 x^{3/2}}{16 a b \left (a+b x^2\right )}-\frac {3 \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{32 \sqrt {2} a^{5/4} b^{7/4}}+\frac {3 \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{32 \sqrt {2} a^{5/4} b^{7/4}}-\frac {3 \text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}}{\sqrt {a}+\sqrt {b} x}\right )}{32 \sqrt {2} a^{5/4} b^{7/4}} \] Output:

-1/4*x^(3/2)/b/(b*x^2+a)^2+3/16*x^(3/2)/a/b/(b*x^2+a)-3/64*arctan(1-2^(1/2 
)*b^(1/4)*x^(1/2)/a^(1/4))*2^(1/2)/a^(5/4)/b^(7/4)+3/64*arctan(1+2^(1/2)*b 
^(1/4)*x^(1/2)/a^(1/4))*2^(1/2)/a^(5/4)/b^(7/4)-3/64*arctanh(2^(1/2)*a^(1/ 
4)*b^(1/4)*x^(1/2)/(a^(1/2)+b^(1/2)*x))*2^(1/2)/a^(5/4)/b^(7/4)
 

Mathematica [A] (verified)

Time = 0.30 (sec) , antiderivative size = 136, normalized size of antiderivative = 0.72 \[ \int \frac {x^{5/2}}{\left (a+b x^2\right )^3} \, dx=\frac {-\frac {4 \sqrt [4]{a} b^{3/4} x^{3/2} \left (a-3 b x^2\right )}{\left (a+b x^2\right )^2}-3 \sqrt {2} \arctan \left (\frac {\sqrt {a}-\sqrt {b} x}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}}\right )-3 \sqrt {2} \text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}}{\sqrt {a}+\sqrt {b} x}\right )}{64 a^{5/4} b^{7/4}} \] Input:

Integrate[x^(5/2)/(a + b*x^2)^3,x]
 

Output:

((-4*a^(1/4)*b^(3/4)*x^(3/2)*(a - 3*b*x^2))/(a + b*x^2)^2 - 3*Sqrt[2]*ArcT 
an[(Sqrt[a] - Sqrt[b]*x)/(Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x])] - 3*Sqrt[2]*Ar 
cTanh[(Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x])/(Sqrt[a] + Sqrt[b]*x)])/(64*a^(5/4 
)*b^(7/4))
 

Rubi [A] (verified)

Time = 0.42 (sec) , antiderivative size = 270, normalized size of antiderivative = 1.43, number of steps used = 12, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.733, Rules used = {252, 253, 266, 826, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^{5/2}}{\left (a+b x^2\right )^3} \, dx\)

\(\Big \downarrow \) 252

\(\displaystyle \frac {3 \int \frac {\sqrt {x}}{\left (b x^2+a\right )^2}dx}{8 b}-\frac {x^{3/2}}{4 b \left (a+b x^2\right )^2}\)

\(\Big \downarrow \) 253

\(\displaystyle \frac {3 \left (\frac {\int \frac {\sqrt {x}}{b x^2+a}dx}{4 a}+\frac {x^{3/2}}{2 a \left (a+b x^2\right )}\right )}{8 b}-\frac {x^{3/2}}{4 b \left (a+b x^2\right )^2}\)

\(\Big \downarrow \) 266

\(\displaystyle \frac {3 \left (\frac {\int \frac {x}{b x^2+a}d\sqrt {x}}{2 a}+\frac {x^{3/2}}{2 a \left (a+b x^2\right )}\right )}{8 b}-\frac {x^{3/2}}{4 b \left (a+b x^2\right )^2}\)

\(\Big \downarrow \) 826

\(\displaystyle \frac {3 \left (\frac {\frac {\int \frac {\sqrt {b} x+\sqrt {a}}{b x^2+a}d\sqrt {x}}{2 \sqrt {b}}-\frac {\int \frac {\sqrt {a}-\sqrt {b} x}{b x^2+a}d\sqrt {x}}{2 \sqrt {b}}}{2 a}+\frac {x^{3/2}}{2 a \left (a+b x^2\right )}\right )}{8 b}-\frac {x^{3/2}}{4 b \left (a+b x^2\right )^2}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {3 \left (\frac {\frac {\frac {\int \frac {1}{x-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}}d\sqrt {x}}{2 \sqrt {b}}+\frac {\int \frac {1}{x+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}}d\sqrt {x}}{2 \sqrt {b}}}{2 \sqrt {b}}-\frac {\int \frac {\sqrt {a}-\sqrt {b} x}{b x^2+a}d\sqrt {x}}{2 \sqrt {b}}}{2 a}+\frac {x^{3/2}}{2 a \left (a+b x^2\right )}\right )}{8 b}-\frac {x^{3/2}}{4 b \left (a+b x^2\right )^2}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {3 \left (\frac {\frac {\frac {\int \frac {1}{-x-1}d\left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\int \frac {1}{-x-1}d\left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}-\frac {\int \frac {\sqrt {a}-\sqrt {b} x}{b x^2+a}d\sqrt {x}}{2 \sqrt {b}}}{2 a}+\frac {x^{3/2}}{2 a \left (a+b x^2\right )}\right )}{8 b}-\frac {x^{3/2}}{4 b \left (a+b x^2\right )^2}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {3 \left (\frac {\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}-\frac {\int \frac {\sqrt {a}-\sqrt {b} x}{b x^2+a}d\sqrt {x}}{2 \sqrt {b}}}{2 a}+\frac {x^{3/2}}{2 a \left (a+b x^2\right )}\right )}{8 b}-\frac {x^{3/2}}{4 b \left (a+b x^2\right )^2}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {3 \left (\frac {\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}-\frac {-\frac {\int -\frac {\sqrt {2} \sqrt [4]{a}-2 \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{b} \left (x-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {2} \sqrt [4]{b} \sqrt {x}+\sqrt [4]{a}\right )}{\sqrt [4]{b} \left (x+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}}{2 a}+\frac {x^{3/2}}{2 a \left (a+b x^2\right )}\right )}{8 b}-\frac {x^{3/2}}{4 b \left (a+b x^2\right )^2}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {3 \left (\frac {\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}-\frac {\frac {\int \frac {\sqrt {2} \sqrt [4]{a}-2 \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{b} \left (x-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {2} \sqrt [4]{b} \sqrt {x}+\sqrt [4]{a}\right )}{\sqrt [4]{b} \left (x+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}}{2 a}+\frac {x^{3/2}}{2 a \left (a+b x^2\right )}\right )}{8 b}-\frac {x^{3/2}}{4 b \left (a+b x^2\right )^2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {3 \left (\frac {\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}-\frac {\frac {\int \frac {\sqrt {2} \sqrt [4]{a}-2 \sqrt [4]{b} \sqrt {x}}{x-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt {b}}+\frac {\int \frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}+\sqrt [4]{a}}{x+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}}d\sqrt {x}}{2 \sqrt [4]{a} \sqrt {b}}}{2 \sqrt {b}}}{2 a}+\frac {x^{3/2}}{2 a \left (a+b x^2\right )}\right )}{8 b}-\frac {x^{3/2}}{4 b \left (a+b x^2\right )^2}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {3 \left (\frac {\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}-\frac {\frac {\log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {a}+\sqrt {b} x\right )}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {a}+\sqrt {b} x\right )}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}}{2 a}+\frac {x^{3/2}}{2 a \left (a+b x^2\right )}\right )}{8 b}-\frac {x^{3/2}}{4 b \left (a+b x^2\right )^2}\)

Input:

Int[x^(5/2)/(a + b*x^2)^3,x]
 

Output:

-1/4*x^(3/2)/(b*(a + b*x^2)^2) + (3*(x^(3/2)/(2*a*(a + b*x^2)) + ((-(ArcTa 
n[1 - (Sqrt[2]*b^(1/4)*Sqrt[x])/a^(1/4)]/(Sqrt[2]*a^(1/4)*b^(1/4))) + ArcT 
an[1 + (Sqrt[2]*b^(1/4)*Sqrt[x])/a^(1/4)]/(Sqrt[2]*a^(1/4)*b^(1/4)))/(2*Sq 
rt[b]) - (-1/2*Log[Sqrt[a] - Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x] + Sqrt[b]*x]/ 
(Sqrt[2]*a^(1/4)*b^(1/4)) + Log[Sqrt[a] + Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x] 
+ Sqrt[b]*x]/(2*Sqrt[2]*a^(1/4)*b^(1/4)))/(2*Sqrt[b]))/(2*a)))/(8*b)
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 252
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[c*(c*x 
)^(m - 1)*((a + b*x^2)^(p + 1)/(2*b*(p + 1))), x] - Simp[c^2*((m - 1)/(2*b* 
(p + 1)))   Int[(c*x)^(m - 2)*(a + b*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c 
}, x] && LtQ[p, -1] && GtQ[m, 1] &&  !ILtQ[(m + 2*p + 3)/2, 0] && IntBinomi 
alQ[a, b, c, 2, m, p, x]
 

rule 253
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-(c*x 
)^(m + 1))*((a + b*x^2)^(p + 1)/(2*a*c*(p + 1))), x] + Simp[(m + 2*p + 3)/( 
2*a*(p + 1))   Int[(c*x)^m*(a + b*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, m 
}, x] && LtQ[p, -1] && IntBinomialQ[a, b, c, 2, m, p, x]
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 826
Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 
2]], s = Denominator[Rt[a/b, 2]]}, Simp[1/(2*s)   Int[(r + s*x^2)/(a + b*x^ 
4), x], x] - Simp[1/(2*s)   Int[(r - s*x^2)/(a + b*x^4), x], x]] /; FreeQ[{ 
a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] 
 && AtomQ[SplitProduct[SumBaseQ, b]]))
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 
Maple [A] (verified)

Time = 0.29 (sec) , antiderivative size = 138, normalized size of antiderivative = 0.73

method result size
derivativedivides \(\frac {\frac {3 x^{\frac {7}{2}}}{16 a}-\frac {x^{\frac {3}{2}}}{16 b}}{\left (b \,x^{2}+a \right )^{2}}+\frac {3 \sqrt {2}\, \left (\ln \left (\frac {x -\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}{x +\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}-1\right )\right )}{128 a \,b^{2} \left (\frac {a}{b}\right )^{\frac {1}{4}}}\) \(138\)
default \(\frac {\frac {3 x^{\frac {7}{2}}}{16 a}-\frac {x^{\frac {3}{2}}}{16 b}}{\left (b \,x^{2}+a \right )^{2}}+\frac {3 \sqrt {2}\, \left (\ln \left (\frac {x -\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}{x +\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}-1\right )\right )}{128 a \,b^{2} \left (\frac {a}{b}\right )^{\frac {1}{4}}}\) \(138\)

Input:

int(x^(5/2)/(b*x^2+a)^3,x,method=_RETURNVERBOSE)
 

Output:

2*(3/32/a*x^(7/2)-1/32*x^(3/2)/b)/(b*x^2+a)^2+3/128/a/b^2/(a/b)^(1/4)*2^(1 
/2)*(ln((x-(a/b)^(1/4)*x^(1/2)*2^(1/2)+(a/b)^(1/2))/(x+(a/b)^(1/4)*x^(1/2) 
*2^(1/2)+(a/b)^(1/2)))+2*arctan(2^(1/2)/(a/b)^(1/4)*x^(1/2)+1)+2*arctan(2^ 
(1/2)/(a/b)^(1/4)*x^(1/2)-1))
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.08 (sec) , antiderivative size = 289, normalized size of antiderivative = 1.53 \[ \int \frac {x^{5/2}}{\left (a+b x^2\right )^3} \, dx=\frac {3 \, {\left (a b^{3} x^{4} + 2 \, a^{2} b^{2} x^{2} + a^{3} b\right )} \left (-\frac {1}{a^{5} b^{7}}\right )^{\frac {1}{4}} \log \left (a^{4} b^{5} \left (-\frac {1}{a^{5} b^{7}}\right )^{\frac {3}{4}} + \sqrt {x}\right ) - 3 \, {\left (i \, a b^{3} x^{4} + 2 i \, a^{2} b^{2} x^{2} + i \, a^{3} b\right )} \left (-\frac {1}{a^{5} b^{7}}\right )^{\frac {1}{4}} \log \left (i \, a^{4} b^{5} \left (-\frac {1}{a^{5} b^{7}}\right )^{\frac {3}{4}} + \sqrt {x}\right ) - 3 \, {\left (-i \, a b^{3} x^{4} - 2 i \, a^{2} b^{2} x^{2} - i \, a^{3} b\right )} \left (-\frac {1}{a^{5} b^{7}}\right )^{\frac {1}{4}} \log \left (-i \, a^{4} b^{5} \left (-\frac {1}{a^{5} b^{7}}\right )^{\frac {3}{4}} + \sqrt {x}\right ) - 3 \, {\left (a b^{3} x^{4} + 2 \, a^{2} b^{2} x^{2} + a^{3} b\right )} \left (-\frac {1}{a^{5} b^{7}}\right )^{\frac {1}{4}} \log \left (-a^{4} b^{5} \left (-\frac {1}{a^{5} b^{7}}\right )^{\frac {3}{4}} + \sqrt {x}\right ) + 4 \, {\left (3 \, b x^{3} - a x\right )} \sqrt {x}}{64 \, {\left (a b^{3} x^{4} + 2 \, a^{2} b^{2} x^{2} + a^{3} b\right )}} \] Input:

integrate(x^(5/2)/(b*x^2+a)^3,x, algorithm="fricas")
 

Output:

1/64*(3*(a*b^3*x^4 + 2*a^2*b^2*x^2 + a^3*b)*(-1/(a^5*b^7))^(1/4)*log(a^4*b 
^5*(-1/(a^5*b^7))^(3/4) + sqrt(x)) - 3*(I*a*b^3*x^4 + 2*I*a^2*b^2*x^2 + I* 
a^3*b)*(-1/(a^5*b^7))^(1/4)*log(I*a^4*b^5*(-1/(a^5*b^7))^(3/4) + sqrt(x)) 
- 3*(-I*a*b^3*x^4 - 2*I*a^2*b^2*x^2 - I*a^3*b)*(-1/(a^5*b^7))^(1/4)*log(-I 
*a^4*b^5*(-1/(a^5*b^7))^(3/4) + sqrt(x)) - 3*(a*b^3*x^4 + 2*a^2*b^2*x^2 + 
a^3*b)*(-1/(a^5*b^7))^(1/4)*log(-a^4*b^5*(-1/(a^5*b^7))^(3/4) + sqrt(x)) + 
 4*(3*b*x^3 - a*x)*sqrt(x))/(a*b^3*x^4 + 2*a^2*b^2*x^2 + a^3*b)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {x^{5/2}}{\left (a+b x^2\right )^3} \, dx=\text {Timed out} \] Input:

integrate(x**(5/2)/(b*x**2+a)**3,x)
 

Output:

Timed out
 

Maxima [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 222, normalized size of antiderivative = 1.17 \[ \int \frac {x^{5/2}}{\left (a+b x^2\right )^3} \, dx=\frac {3 \, b x^{\frac {7}{2}} - a x^{\frac {3}{2}}}{16 \, {\left (a b^{3} x^{4} + 2 \, a^{2} b^{2} x^{2} + a^{3} b\right )}} + \frac {3 \, {\left (\frac {2 \, \sqrt {2} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} + 2 \, \sqrt {b} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b}}}\right )}{\sqrt {\sqrt {a} \sqrt {b}} \sqrt {b}} + \frac {2 \, \sqrt {2} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} - 2 \, \sqrt {b} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b}}}\right )}{\sqrt {\sqrt {a} \sqrt {b}} \sqrt {b}} - \frac {\sqrt {2} \log \left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {x} + \sqrt {b} x + \sqrt {a}\right )}{a^{\frac {1}{4}} b^{\frac {3}{4}}} + \frac {\sqrt {2} \log \left (-\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {x} + \sqrt {b} x + \sqrt {a}\right )}{a^{\frac {1}{4}} b^{\frac {3}{4}}}\right )}}{128 \, a b} \] Input:

integrate(x^(5/2)/(b*x^2+a)^3,x, algorithm="maxima")
 

Output:

1/16*(3*b*x^(7/2) - a*x^(3/2))/(a*b^3*x^4 + 2*a^2*b^2*x^2 + a^3*b) + 3/128 
*(2*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2)*a^(1/4)*b^(1/4) + 2*sqrt(b)*sqrt(x 
))/sqrt(sqrt(a)*sqrt(b)))/(sqrt(sqrt(a)*sqrt(b))*sqrt(b)) + 2*sqrt(2)*arct 
an(-1/2*sqrt(2)*(sqrt(2)*a^(1/4)*b^(1/4) - 2*sqrt(b)*sqrt(x))/sqrt(sqrt(a) 
*sqrt(b)))/(sqrt(sqrt(a)*sqrt(b))*sqrt(b)) - sqrt(2)*log(sqrt(2)*a^(1/4)*b 
^(1/4)*sqrt(x) + sqrt(b)*x + sqrt(a))/(a^(1/4)*b^(3/4)) + sqrt(2)*log(-sqr 
t(2)*a^(1/4)*b^(1/4)*sqrt(x) + sqrt(b)*x + sqrt(a))/(a^(1/4)*b^(3/4)))/(a* 
b)
 

Giac [A] (verification not implemented)

Time = 0.13 (sec) , antiderivative size = 212, normalized size of antiderivative = 1.12 \[ \int \frac {x^{5/2}}{\left (a+b x^2\right )^3} \, dx=\frac {3 \, b x^{\frac {7}{2}} - a x^{\frac {3}{2}}}{16 \, {\left (b x^{2} + a\right )}^{2} a b} + \frac {3 \, \sqrt {2} \left (a b^{3}\right )^{\frac {3}{4}} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {a}{b}\right )^{\frac {1}{4}} + 2 \, \sqrt {x}\right )}}{2 \, \left (\frac {a}{b}\right )^{\frac {1}{4}}}\right )}{64 \, a^{2} b^{4}} + \frac {3 \, \sqrt {2} \left (a b^{3}\right )^{\frac {3}{4}} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {a}{b}\right )^{\frac {1}{4}} - 2 \, \sqrt {x}\right )}}{2 \, \left (\frac {a}{b}\right )^{\frac {1}{4}}}\right )}{64 \, a^{2} b^{4}} - \frac {3 \, \sqrt {2} \left (a b^{3}\right )^{\frac {3}{4}} \log \left (\sqrt {2} \sqrt {x} \left (\frac {a}{b}\right )^{\frac {1}{4}} + x + \sqrt {\frac {a}{b}}\right )}{128 \, a^{2} b^{4}} + \frac {3 \, \sqrt {2} \left (a b^{3}\right )^{\frac {3}{4}} \log \left (-\sqrt {2} \sqrt {x} \left (\frac {a}{b}\right )^{\frac {1}{4}} + x + \sqrt {\frac {a}{b}}\right )}{128 \, a^{2} b^{4}} \] Input:

integrate(x^(5/2)/(b*x^2+a)^3,x, algorithm="giac")
                                                                                    
                                                                                    
 

Output:

1/16*(3*b*x^(7/2) - a*x^(3/2))/((b*x^2 + a)^2*a*b) + 3/64*sqrt(2)*(a*b^3)^ 
(3/4)*arctan(1/2*sqrt(2)*(sqrt(2)*(a/b)^(1/4) + 2*sqrt(x))/(a/b)^(1/4))/(a 
^2*b^4) + 3/64*sqrt(2)*(a*b^3)^(3/4)*arctan(-1/2*sqrt(2)*(sqrt(2)*(a/b)^(1 
/4) - 2*sqrt(x))/(a/b)^(1/4))/(a^2*b^4) - 3/128*sqrt(2)*(a*b^3)^(3/4)*log( 
sqrt(2)*sqrt(x)*(a/b)^(1/4) + x + sqrt(a/b))/(a^2*b^4) + 3/128*sqrt(2)*(a* 
b^3)^(3/4)*log(-sqrt(2)*sqrt(x)*(a/b)^(1/4) + x + sqrt(a/b))/(a^2*b^4)
 

Mupad [B] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 85, normalized size of antiderivative = 0.45 \[ \int \frac {x^{5/2}}{\left (a+b x^2\right )^3} \, dx=\frac {\frac {3\,x^{7/2}}{16\,a}-\frac {x^{3/2}}{16\,b}}{a^2+2\,a\,b\,x^2+b^2\,x^4}-\frac {3\,\mathrm {atan}\left (\frac {b^{1/4}\,\sqrt {x}}{{\left (-a\right )}^{1/4}}\right )}{32\,{\left (-a\right )}^{5/4}\,b^{7/4}}+\frac {3\,\mathrm {atanh}\left (\frac {b^{1/4}\,\sqrt {x}}{{\left (-a\right )}^{1/4}}\right )}{32\,{\left (-a\right )}^{5/4}\,b^{7/4}} \] Input:

int(x^(5/2)/(a + b*x^2)^3,x)
 

Output:

((3*x^(7/2))/(16*a) - x^(3/2)/(16*b))/(a^2 + b^2*x^4 + 2*a*b*x^2) - (3*ata 
n((b^(1/4)*x^(1/2))/(-a)^(1/4)))/(32*(-a)^(5/4)*b^(7/4)) + (3*atanh((b^(1/ 
4)*x^(1/2))/(-a)^(1/4)))/(32*(-a)^(5/4)*b^(7/4))
 

Reduce [B] (verification not implemented)

Time = 0.20 (sec) , antiderivative size = 478, normalized size of antiderivative = 2.53 \[ \int \frac {x^{5/2}}{\left (a+b x^2\right )^3} \, dx =\text {Too large to display} \] Input:

int(x^(5/2)/(b*x^2+a)^3,x)
 

Output:

( - 6*b**(1/4)*a**(3/4)*sqrt(2)*atan((b**(1/4)*a**(1/4)*sqrt(2) - 2*sqrt(x 
)*sqrt(b))/(b**(1/4)*a**(1/4)*sqrt(2)))*a**2 - 12*b**(1/4)*a**(3/4)*sqrt(2 
)*atan((b**(1/4)*a**(1/4)*sqrt(2) - 2*sqrt(x)*sqrt(b))/(b**(1/4)*a**(1/4)* 
sqrt(2)))*a*b*x**2 - 6*b**(1/4)*a**(3/4)*sqrt(2)*atan((b**(1/4)*a**(1/4)*s 
qrt(2) - 2*sqrt(x)*sqrt(b))/(b**(1/4)*a**(1/4)*sqrt(2)))*b**2*x**4 + 6*b** 
(1/4)*a**(3/4)*sqrt(2)*atan((b**(1/4)*a**(1/4)*sqrt(2) + 2*sqrt(x)*sqrt(b) 
)/(b**(1/4)*a**(1/4)*sqrt(2)))*a**2 + 12*b**(1/4)*a**(3/4)*sqrt(2)*atan((b 
**(1/4)*a**(1/4)*sqrt(2) + 2*sqrt(x)*sqrt(b))/(b**(1/4)*a**(1/4)*sqrt(2))) 
*a*b*x**2 + 6*b**(1/4)*a**(3/4)*sqrt(2)*atan((b**(1/4)*a**(1/4)*sqrt(2) + 
2*sqrt(x)*sqrt(b))/(b**(1/4)*a**(1/4)*sqrt(2)))*b**2*x**4 + 3*b**(1/4)*a** 
(3/4)*sqrt(2)*log( - sqrt(x)*b**(1/4)*a**(1/4)*sqrt(2) + sqrt(a) + sqrt(b) 
*x)*a**2 + 6*b**(1/4)*a**(3/4)*sqrt(2)*log( - sqrt(x)*b**(1/4)*a**(1/4)*sq 
rt(2) + sqrt(a) + sqrt(b)*x)*a*b*x**2 + 3*b**(1/4)*a**(3/4)*sqrt(2)*log( - 
 sqrt(x)*b**(1/4)*a**(1/4)*sqrt(2) + sqrt(a) + sqrt(b)*x)*b**2*x**4 - 3*b* 
*(1/4)*a**(3/4)*sqrt(2)*log(sqrt(x)*b**(1/4)*a**(1/4)*sqrt(2) + sqrt(a) + 
sqrt(b)*x)*a**2 - 6*b**(1/4)*a**(3/4)*sqrt(2)*log(sqrt(x)*b**(1/4)*a**(1/4 
)*sqrt(2) + sqrt(a) + sqrt(b)*x)*a*b*x**2 - 3*b**(1/4)*a**(3/4)*sqrt(2)*lo 
g(sqrt(x)*b**(1/4)*a**(1/4)*sqrt(2) + sqrt(a) + sqrt(b)*x)*b**2*x**4 - 8*s 
qrt(x)*a**2*b*x + 24*sqrt(x)*a*b**2*x**3)/(128*a**2*b**2*(a**2 + 2*a*b*x** 
2 + b**2*x**4))