\(\int \frac {x^{7/2}}{1+x^2} \, dx\) [312]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 13, antiderivative size = 82 \[ \int \frac {x^{7/2}}{1+x^2} \, dx=-2 \sqrt {x}+\frac {2 x^{5/2}}{5}-\frac {\arctan \left (1-\sqrt {2} \sqrt {x}\right )}{\sqrt {2}}+\frac {\arctan \left (1+\sqrt {2} \sqrt {x}\right )}{\sqrt {2}}+\frac {\text {arctanh}\left (\frac {\sqrt {2} \sqrt {x}}{1+x}\right )}{\sqrt {2}} \] Output:

-2*x^(1/2)+2/5*x^(5/2)+1/2*arctan(-1+2^(1/2)*x^(1/2))*2^(1/2)+1/2*arctan(1 
+2^(1/2)*x^(1/2))*2^(1/2)+1/2*arctanh(2^(1/2)*x^(1/2)/(1+x))*2^(1/2)
 

Mathematica [A] (verified)

Time = 0.07 (sec) , antiderivative size = 59, normalized size of antiderivative = 0.72 \[ \int \frac {x^{7/2}}{1+x^2} \, dx=\frac {2}{5} \sqrt {x} \left (-5+x^2\right )+\frac {\arctan \left (\frac {-1+x}{\sqrt {2} \sqrt {x}}\right )}{\sqrt {2}}+\frac {\text {arctanh}\left (\frac {\sqrt {2} \sqrt {x}}{1+x}\right )}{\sqrt {2}} \] Input:

Integrate[x^(7/2)/(1 + x^2),x]
 

Output:

(2*Sqrt[x]*(-5 + x^2))/5 + ArcTan[(-1 + x)/(Sqrt[2]*Sqrt[x])]/Sqrt[2] + Ar 
cTanh[(Sqrt[2]*Sqrt[x])/(1 + x)]/Sqrt[2]
 

Rubi [A] (verified)

Time = 0.29 (sec) , antiderivative size = 121, normalized size of antiderivative = 1.48, number of steps used = 12, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.846, Rules used = {262, 262, 266, 755, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^{7/2}}{x^2+1} \, dx\)

\(\Big \downarrow \) 262

\(\displaystyle \frac {2 x^{5/2}}{5}-\int \frac {x^{3/2}}{x^2+1}dx\)

\(\Big \downarrow \) 262

\(\displaystyle \int \frac {1}{\sqrt {x} \left (x^2+1\right )}dx+\frac {2 x^{5/2}}{5}-2 \sqrt {x}\)

\(\Big \downarrow \) 266

\(\displaystyle 2 \int \frac {1}{x^2+1}d\sqrt {x}+\frac {2 x^{5/2}}{5}-2 \sqrt {x}\)

\(\Big \downarrow \) 755

\(\displaystyle 2 \left (\frac {1}{2} \int \frac {1-x}{x^2+1}d\sqrt {x}+\frac {1}{2} \int \frac {x+1}{x^2+1}d\sqrt {x}\right )+\frac {2 x^{5/2}}{5}-2 \sqrt {x}\)

\(\Big \downarrow \) 1476

\(\displaystyle 2 \left (\frac {1}{2} \int \frac {1-x}{x^2+1}d\sqrt {x}+\frac {1}{2} \left (\frac {1}{2} \int \frac {1}{x-\sqrt {2} \sqrt {x}+1}d\sqrt {x}+\frac {1}{2} \int \frac {1}{x+\sqrt {2} \sqrt {x}+1}d\sqrt {x}\right )\right )+\frac {2 x^{5/2}}{5}-2 \sqrt {x}\)

\(\Big \downarrow \) 1082

\(\displaystyle 2 \left (\frac {1}{2} \int \frac {1-x}{x^2+1}d\sqrt {x}+\frac {1}{2} \left (\frac {\int \frac {1}{-x-1}d\left (1-\sqrt {2} \sqrt {x}\right )}{\sqrt {2}}-\frac {\int \frac {1}{-x-1}d\left (\sqrt {2} \sqrt {x}+1\right )}{\sqrt {2}}\right )\right )+\frac {2 x^{5/2}}{5}-2 \sqrt {x}\)

\(\Big \downarrow \) 217

\(\displaystyle 2 \left (\frac {1}{2} \int \frac {1-x}{x^2+1}d\sqrt {x}+\frac {1}{2} \left (\frac {\arctan \left (\sqrt {2} \sqrt {x}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {x}\right )}{\sqrt {2}}\right )\right )+\frac {2 x^{5/2}}{5}-2 \sqrt {x}\)

\(\Big \downarrow \) 1479

\(\displaystyle 2 \left (\frac {1}{2} \left (-\frac {\int -\frac {\sqrt {2}-2 \sqrt {x}}{x-\sqrt {2} \sqrt {x}+1}d\sqrt {x}}{2 \sqrt {2}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {2} \sqrt {x}+1\right )}{x+\sqrt {2} \sqrt {x}+1}d\sqrt {x}}{2 \sqrt {2}}\right )+\frac {1}{2} \left (\frac {\arctan \left (\sqrt {2} \sqrt {x}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {x}\right )}{\sqrt {2}}\right )\right )+\frac {2 x^{5/2}}{5}-2 \sqrt {x}\)

\(\Big \downarrow \) 25

\(\displaystyle 2 \left (\frac {1}{2} \left (\frac {\int \frac {\sqrt {2}-2 \sqrt {x}}{x-\sqrt {2} \sqrt {x}+1}d\sqrt {x}}{2 \sqrt {2}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {2} \sqrt {x}+1\right )}{x+\sqrt {2} \sqrt {x}+1}d\sqrt {x}}{2 \sqrt {2}}\right )+\frac {1}{2} \left (\frac {\arctan \left (\sqrt {2} \sqrt {x}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {x}\right )}{\sqrt {2}}\right )\right )+\frac {2 x^{5/2}}{5}-2 \sqrt {x}\)

\(\Big \downarrow \) 27

\(\displaystyle 2 \left (\frac {1}{2} \left (\frac {\int \frac {\sqrt {2}-2 \sqrt {x}}{x-\sqrt {2} \sqrt {x}+1}d\sqrt {x}}{2 \sqrt {2}}+\frac {1}{2} \int \frac {\sqrt {2} \sqrt {x}+1}{x+\sqrt {2} \sqrt {x}+1}d\sqrt {x}\right )+\frac {1}{2} \left (\frac {\arctan \left (\sqrt {2} \sqrt {x}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {x}\right )}{\sqrt {2}}\right )\right )+\frac {2 x^{5/2}}{5}-2 \sqrt {x}\)

\(\Big \downarrow \) 1103

\(\displaystyle 2 \left (\frac {1}{2} \left (\frac {\arctan \left (\sqrt {2} \sqrt {x}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {x}\right )}{\sqrt {2}}\right )+\frac {1}{2} \left (\frac {\log \left (x+\sqrt {2} \sqrt {x}+1\right )}{2 \sqrt {2}}-\frac {\log \left (x-\sqrt {2} \sqrt {x}+1\right )}{2 \sqrt {2}}\right )\right )+\frac {2 x^{5/2}}{5}-2 \sqrt {x}\)

Input:

Int[x^(7/2)/(1 + x^2),x]
 

Output:

-2*Sqrt[x] + (2*x^(5/2))/5 + 2*((-(ArcTan[1 - Sqrt[2]*Sqrt[x]]/Sqrt[2]) + 
ArcTan[1 + Sqrt[2]*Sqrt[x]]/Sqrt[2])/2 + (-1/2*Log[1 - Sqrt[2]*Sqrt[x] + x 
]/Sqrt[2] + Log[1 + Sqrt[2]*Sqrt[x] + x]/(2*Sqrt[2]))/2)
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 262
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[c*(c*x) 
^(m - 1)*((a + b*x^2)^(p + 1)/(b*(m + 2*p + 1))), x] - Simp[a*c^2*((m - 1)/ 
(b*(m + 2*p + 1)))   Int[(c*x)^(m - 2)*(a + b*x^2)^p, x], x] /; FreeQ[{a, b 
, c, p}, x] && GtQ[m, 2 - 1] && NeQ[m + 2*p + 1, 0] && IntBinomialQ[a, b, c 
, 2, m, p, x]
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 755
Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2] 
], s = Denominator[Rt[a/b, 2]]}, Simp[1/(2*r)   Int[(r - s*x^2)/(a + b*x^4) 
, x], x] + Simp[1/(2*r)   Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[{a, 
 b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] & 
& AtomQ[SplitProduct[SumBaseQ, b]]))
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 
Maple [A] (verified)

Time = 0.82 (sec) , antiderivative size = 67, normalized size of antiderivative = 0.82

method result size
derivativedivides \(\frac {2 x^{\frac {5}{2}}}{5}-2 \sqrt {x}+\frac {\sqrt {2}\, \left (\ln \left (\frac {x +\sqrt {2}\, \sqrt {x}+1}{x -\sqrt {2}\, \sqrt {x}+1}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {x}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {x}\right )\right )}{4}\) \(67\)
default \(\frac {2 x^{\frac {5}{2}}}{5}-2 \sqrt {x}+\frac {\sqrt {2}\, \left (\ln \left (\frac {x +\sqrt {2}\, \sqrt {x}+1}{x -\sqrt {2}\, \sqrt {x}+1}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {x}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {x}\right )\right )}{4}\) \(67\)
risch \(\frac {2 \left (x^{2}-5\right ) \sqrt {x}}{5}+\frac {\sqrt {2}\, \left (\ln \left (\frac {x +\sqrt {2}\, \sqrt {x}+1}{x -\sqrt {2}\, \sqrt {x}+1}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {x}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {x}\right )\right )}{4}\) \(67\)
meijerg \(-\frac {2 \sqrt {x}\, \left (-9 x^{2}+45\right )}{45}+\frac {\sqrt {x}\, \left (-\frac {\sqrt {2}\, \ln \left (1-\sqrt {2}\, \left (x^{2}\right )^{\frac {1}{4}}+\sqrt {x^{2}}\right )}{2 \left (x^{2}\right )^{\frac {1}{4}}}+\frac {\sqrt {2}\, \arctan \left (\frac {\sqrt {2}\, \left (x^{2}\right )^{\frac {1}{4}}}{2-\sqrt {2}\, \left (x^{2}\right )^{\frac {1}{4}}}\right )}{\left (x^{2}\right )^{\frac {1}{4}}}+\frac {\sqrt {2}\, \ln \left (1+\sqrt {2}\, \left (x^{2}\right )^{\frac {1}{4}}+\sqrt {x^{2}}\right )}{2 \left (x^{2}\right )^{\frac {1}{4}}}+\frac {\sqrt {2}\, \arctan \left (\frac {\sqrt {2}\, \left (x^{2}\right )^{\frac {1}{4}}}{2+\sqrt {2}\, \left (x^{2}\right )^{\frac {1}{4}}}\right )}{\left (x^{2}\right )^{\frac {1}{4}}}\right )}{2}\) \(143\)
trager \(\left (\frac {2 x^{2}}{5}-2\right ) \sqrt {x}+\frac {\operatorname {RootOf}\left (\textit {\_Z}^{4}+1\right ) \ln \left (-\frac {\operatorname {RootOf}\left (\textit {\_Z}^{4}+1\right )^{5} x -\operatorname {RootOf}\left (\textit {\_Z}^{4}+1\right )^{5}-2 \operatorname {RootOf}\left (\textit {\_Z}^{4}+1\right )^{3} x +\operatorname {RootOf}\left (\textit {\_Z}^{4}+1\right ) x +\operatorname {RootOf}\left (\textit {\_Z}^{4}+1\right )+4 \sqrt {x}}{\operatorname {RootOf}\left (\textit {\_Z}^{4}+1\right )^{2} x -\operatorname {RootOf}\left (\textit {\_Z}^{4}+1\right )^{2}+x +1}\right )}{2}+\frac {\operatorname {RootOf}\left (\textit {\_Z}^{4}+1\right )^{3} \ln \left (-\frac {\operatorname {RootOf}\left (\textit {\_Z}^{4}+1\right )^{5} x -\operatorname {RootOf}\left (\textit {\_Z}^{4}+1\right )^{5}+2 \operatorname {RootOf}\left (\textit {\_Z}^{4}+1\right )^{3}-\operatorname {RootOf}\left (\textit {\_Z}^{4}+1\right ) x -\operatorname {RootOf}\left (\textit {\_Z}^{4}+1\right )+4 \sqrt {x}}{\operatorname {RootOf}\left (\textit {\_Z}^{4}+1\right )^{2} x -\operatorname {RootOf}\left (\textit {\_Z}^{4}+1\right )^{2}-x -1}\right )}{2}\) \(193\)

Input:

int(x^(7/2)/(x^2+1),x,method=_RETURNVERBOSE)
 

Output:

2/5*x^(5/2)-2*x^(1/2)+1/4*2^(1/2)*(ln((x+2^(1/2)*x^(1/2)+1)/(x-2^(1/2)*x^( 
1/2)+1))+2*arctan(1+2^(1/2)*x^(1/2))+2*arctan(-1+2^(1/2)*x^(1/2)))
 

Fricas [A] (verification not implemented)

Time = 0.07 (sec) , antiderivative size = 74, normalized size of antiderivative = 0.90 \[ \int \frac {x^{7/2}}{1+x^2} \, dx=\frac {2}{5} \, {\left (x^{2} - 5\right )} \sqrt {x} + \frac {1}{2} \, \sqrt {2} \arctan \left (\sqrt {2} \sqrt {x} + 1\right ) + \frac {1}{2} \, \sqrt {2} \arctan \left (\sqrt {2} \sqrt {x} - 1\right ) + \frac {1}{4} \, \sqrt {2} \log \left (\sqrt {2} \sqrt {x} + x + 1\right ) - \frac {1}{4} \, \sqrt {2} \log \left (-\sqrt {2} \sqrt {x} + x + 1\right ) \] Input:

integrate(x^(7/2)/(x^2+1),x, algorithm="fricas")
 

Output:

2/5*(x^2 - 5)*sqrt(x) + 1/2*sqrt(2)*arctan(sqrt(2)*sqrt(x) + 1) + 1/2*sqrt 
(2)*arctan(sqrt(2)*sqrt(x) - 1) + 1/4*sqrt(2)*log(sqrt(2)*sqrt(x) + x + 1) 
 - 1/4*sqrt(2)*log(-sqrt(2)*sqrt(x) + x + 1)
 

Sympy [A] (verification not implemented)

Time = 0.44 (sec) , antiderivative size = 105, normalized size of antiderivative = 1.28 \[ \int \frac {x^{7/2}}{1+x^2} \, dx=\frac {2 x^{\frac {5}{2}}}{5} - 2 \sqrt {x} - \frac {\sqrt {2} \log {\left (- 4 \sqrt {2} \sqrt {x} + 4 x + 4 \right )}}{4} + \frac {\sqrt {2} \log {\left (4 \sqrt {2} \sqrt {x} + 4 x + 4 \right )}}{4} + \frac {\sqrt {2} \operatorname {atan}{\left (\sqrt {2} \sqrt {x} - 1 \right )}}{2} + \frac {\sqrt {2} \operatorname {atan}{\left (\sqrt {2} \sqrt {x} + 1 \right )}}{2} \] Input:

integrate(x**(7/2)/(x**2+1),x)
 

Output:

2*x**(5/2)/5 - 2*sqrt(x) - sqrt(2)*log(-4*sqrt(2)*sqrt(x) + 4*x + 4)/4 + s 
qrt(2)*log(4*sqrt(2)*sqrt(x) + 4*x + 4)/4 + sqrt(2)*atan(sqrt(2)*sqrt(x) - 
 1)/2 + sqrt(2)*atan(sqrt(2)*sqrt(x) + 1)/2
 

Maxima [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 84, normalized size of antiderivative = 1.02 \[ \int \frac {x^{7/2}}{1+x^2} \, dx=\frac {2}{5} \, x^{\frac {5}{2}} + \frac {1}{2} \, \sqrt {2} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + 2 \, \sqrt {x}\right )}\right ) + \frac {1}{2} \, \sqrt {2} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - 2 \, \sqrt {x}\right )}\right ) + \frac {1}{4} \, \sqrt {2} \log \left (\sqrt {2} \sqrt {x} + x + 1\right ) - \frac {1}{4} \, \sqrt {2} \log \left (-\sqrt {2} \sqrt {x} + x + 1\right ) - 2 \, \sqrt {x} \] Input:

integrate(x^(7/2)/(x^2+1),x, algorithm="maxima")
 

Output:

2/5*x^(5/2) + 1/2*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2) + 2*sqrt(x))) + 1/2* 
sqrt(2)*arctan(-1/2*sqrt(2)*(sqrt(2) - 2*sqrt(x))) + 1/4*sqrt(2)*log(sqrt( 
2)*sqrt(x) + x + 1) - 1/4*sqrt(2)*log(-sqrt(2)*sqrt(x) + x + 1) - 2*sqrt(x 
)
 

Giac [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 84, normalized size of antiderivative = 1.02 \[ \int \frac {x^{7/2}}{1+x^2} \, dx=\frac {2}{5} \, x^{\frac {5}{2}} + \frac {1}{2} \, \sqrt {2} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + 2 \, \sqrt {x}\right )}\right ) + \frac {1}{2} \, \sqrt {2} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - 2 \, \sqrt {x}\right )}\right ) + \frac {1}{4} \, \sqrt {2} \log \left (\sqrt {2} \sqrt {x} + x + 1\right ) - \frac {1}{4} \, \sqrt {2} \log \left (-\sqrt {2} \sqrt {x} + x + 1\right ) - 2 \, \sqrt {x} \] Input:

integrate(x^(7/2)/(x^2+1),x, algorithm="giac")
 

Output:

2/5*x^(5/2) + 1/2*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2) + 2*sqrt(x))) + 1/2* 
sqrt(2)*arctan(-1/2*sqrt(2)*(sqrt(2) - 2*sqrt(x))) + 1/4*sqrt(2)*log(sqrt( 
2)*sqrt(x) + x + 1) - 1/4*sqrt(2)*log(-sqrt(2)*sqrt(x) + x + 1) - 2*sqrt(x 
)
 

Mupad [B] (verification not implemented)

Time = 0.20 (sec) , antiderivative size = 47, normalized size of antiderivative = 0.57 \[ \int \frac {x^{7/2}}{1+x^2} \, dx=\frac {2\,x^{5/2}}{5}-2\,\sqrt {x}+\sqrt {2}\,\mathrm {atan}\left (\sqrt {2}\,\sqrt {x}\,\left (\frac {1}{2}-\frac {1}{2}{}\mathrm {i}\right )\right )\,\left (\frac {1}{2}+\frac {1}{2}{}\mathrm {i}\right )+\sqrt {2}\,\mathrm {atan}\left (\sqrt {2}\,\sqrt {x}\,\left (\frac {1}{2}+\frac {1}{2}{}\mathrm {i}\right )\right )\,\left (\frac {1}{2}-\frac {1}{2}{}\mathrm {i}\right ) \] Input:

int(x^(7/2)/(x^2 + 1),x)
 

Output:

2^(1/2)*atan(2^(1/2)*x^(1/2)*(1/2 - 1i/2))*(1/2 + 1i/2) + 2^(1/2)*atan(2^( 
1/2)*x^(1/2)*(1/2 + 1i/2))*(1/2 - 1i/2) - 2*x^(1/2) + (2*x^(5/2))/5
 

Reduce [B] (verification not implemented)

Time = 0.17 (sec) , antiderivative size = 75, normalized size of antiderivative = 0.91 \[ \int \frac {x^{7/2}}{1+x^2} \, dx=\frac {\sqrt {2}\, \mathit {atan} \left (\frac {2 \sqrt {x}-\sqrt {2}}{\sqrt {2}}\right )}{2}+\frac {\sqrt {2}\, \mathit {atan} \left (\frac {2 \sqrt {x}+\sqrt {2}}{\sqrt {2}}\right )}{2}+\frac {2 \sqrt {x}\, x^{2}}{5}-2 \sqrt {x}-\frac {\sqrt {2}\, \mathrm {log}\left (-\sqrt {x}\, \sqrt {2}+x +1\right )}{4}+\frac {\sqrt {2}\, \mathrm {log}\left (\sqrt {x}\, \sqrt {2}+x +1\right )}{4} \] Input:

int(x^(7/2)/(x^2+1),x)
 

Output:

(10*sqrt(2)*atan((2*sqrt(x) - sqrt(2))/sqrt(2)) + 10*sqrt(2)*atan((2*sqrt( 
x) + sqrt(2))/sqrt(2)) + 8*sqrt(x)*x**2 - 40*sqrt(x) - 5*sqrt(2)*log( - sq 
rt(x)*sqrt(2) + x + 1) + 5*sqrt(2)*log(sqrt(x)*sqrt(2) + x + 1))/20