\(\int \frac {(c x)^{9/2}}{(a+b x^2)^{3/2}} \, dx\) [632]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [C] (verification not implemented)
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 19, antiderivative size = 299 \[ \int \frac {(c x)^{9/2}}{\left (a+b x^2\right )^{3/2}} \, dx=-\frac {c (c x)^{7/2}}{b \sqrt {a+b x^2}}+\frac {7 c^3 (c x)^{3/2} \sqrt {a+b x^2}}{5 b^2}-\frac {21 a c^4 \sqrt {c x} \sqrt {a+b x^2}}{5 b^{5/2} \left (\sqrt {a}+\sqrt {b} x\right )}+\frac {21 a^{5/4} c^{9/2} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{b} \sqrt {c x}}{\sqrt [4]{a} \sqrt {c}}\right )|\frac {1}{2}\right )}{5 b^{11/4} \sqrt {a+b x^2}}-\frac {21 a^{5/4} c^{9/2} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{b} \sqrt {c x}}{\sqrt [4]{a} \sqrt {c}}\right ),\frac {1}{2}\right )}{10 b^{11/4} \sqrt {a+b x^2}} \] Output:

-c*(c*x)^(7/2)/b/(b*x^2+a)^(1/2)+7/5*c^3*(c*x)^(3/2)*(b*x^2+a)^(1/2)/b^2-2 
1/5*a*c^4*(c*x)^(1/2)*(b*x^2+a)^(1/2)/b^(5/2)/(a^(1/2)+b^(1/2)*x)+21/5*a^( 
5/4)*c^(9/2)*(a^(1/2)+b^(1/2)*x)*((b*x^2+a)/(a^(1/2)+b^(1/2)*x)^2)^(1/2)*E 
llipticE(sin(2*arctan(b^(1/4)*(c*x)^(1/2)/a^(1/4)/c^(1/2))),1/2*2^(1/2))/b 
^(11/4)/(b*x^2+a)^(1/2)-21/10*a^(5/4)*c^(9/2)*(a^(1/2)+b^(1/2)*x)*((b*x^2+ 
a)/(a^(1/2)+b^(1/2)*x)^2)^(1/2)*InverseJacobiAM(2*arctan(b^(1/4)*(c*x)^(1/ 
2)/a^(1/4)/c^(1/2)),1/2*2^(1/2))/b^(11/4)/(b*x^2+a)^(1/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.03 (sec) , antiderivative size = 73, normalized size of antiderivative = 0.24 \[ \int \frac {(c x)^{9/2}}{\left (a+b x^2\right )^{3/2}} \, dx=\frac {2 c^3 (c x)^{3/2} \left (-7 a+b x^2+7 a \sqrt {1+\frac {b x^2}{a}} \operatorname {Hypergeometric2F1}\left (\frac {3}{4},\frac {3}{2},\frac {7}{4},-\frac {b x^2}{a}\right )\right )}{5 b^2 \sqrt {a+b x^2}} \] Input:

Integrate[(c*x)^(9/2)/(a + b*x^2)^(3/2),x]
 

Output:

(2*c^3*(c*x)^(3/2)*(-7*a + b*x^2 + 7*a*Sqrt[1 + (b*x^2)/a]*Hypergeometric2 
F1[3/4, 3/2, 7/4, -((b*x^2)/a)]))/(5*b^2*Sqrt[a + b*x^2])
 

Rubi [A] (verified)

Time = 0.39 (sec) , antiderivative size = 344, normalized size of antiderivative = 1.15, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.368, Rules used = {252, 262, 266, 834, 27, 761, 1510}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(c x)^{9/2}}{\left (a+b x^2\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 252

\(\displaystyle \frac {7 c^2 \int \frac {(c x)^{5/2}}{\sqrt {b x^2+a}}dx}{2 b}-\frac {c (c x)^{7/2}}{b \sqrt {a+b x^2}}\)

\(\Big \downarrow \) 262

\(\displaystyle \frac {7 c^2 \left (\frac {2 c (c x)^{3/2} \sqrt {a+b x^2}}{5 b}-\frac {3 a c^2 \int \frac {\sqrt {c x}}{\sqrt {b x^2+a}}dx}{5 b}\right )}{2 b}-\frac {c (c x)^{7/2}}{b \sqrt {a+b x^2}}\)

\(\Big \downarrow \) 266

\(\displaystyle \frac {7 c^2 \left (\frac {2 c (c x)^{3/2} \sqrt {a+b x^2}}{5 b}-\frac {6 a c \int \frac {c x}{\sqrt {b x^2+a}}d\sqrt {c x}}{5 b}\right )}{2 b}-\frac {c (c x)^{7/2}}{b \sqrt {a+b x^2}}\)

\(\Big \downarrow \) 834

\(\displaystyle \frac {7 c^2 \left (\frac {2 c (c x)^{3/2} \sqrt {a+b x^2}}{5 b}-\frac {6 a c \left (\frac {\sqrt {a} c \int \frac {1}{\sqrt {b x^2+a}}d\sqrt {c x}}{\sqrt {b}}-\frac {\sqrt {a} c \int \frac {\sqrt {a} c-\sqrt {b} c x}{\sqrt {a} c \sqrt {b x^2+a}}d\sqrt {c x}}{\sqrt {b}}\right )}{5 b}\right )}{2 b}-\frac {c (c x)^{7/2}}{b \sqrt {a+b x^2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {7 c^2 \left (\frac {2 c (c x)^{3/2} \sqrt {a+b x^2}}{5 b}-\frac {6 a c \left (\frac {\sqrt {a} c \int \frac {1}{\sqrt {b x^2+a}}d\sqrt {c x}}{\sqrt {b}}-\frac {\int \frac {\sqrt {a} c-\sqrt {b} c x}{\sqrt {b x^2+a}}d\sqrt {c x}}{\sqrt {b}}\right )}{5 b}\right )}{2 b}-\frac {c (c x)^{7/2}}{b \sqrt {a+b x^2}}\)

\(\Big \downarrow \) 761

\(\displaystyle \frac {7 c^2 \left (\frac {2 c (c x)^{3/2} \sqrt {a+b x^2}}{5 b}-\frac {6 a c \left (\frac {\sqrt [4]{a} \sqrt {c} \left (\sqrt {a} c+\sqrt {b} c x\right ) \sqrt {\frac {a c^2+b c^2 x^2}{\left (\sqrt {a} c+\sqrt {b} c x\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{b} \sqrt {c x}}{\sqrt [4]{a} \sqrt {c}}\right ),\frac {1}{2}\right )}{2 b^{3/4} \sqrt {a+b x^2}}-\frac {\int \frac {\sqrt {a} c-\sqrt {b} c x}{\sqrt {b x^2+a}}d\sqrt {c x}}{\sqrt {b}}\right )}{5 b}\right )}{2 b}-\frac {c (c x)^{7/2}}{b \sqrt {a+b x^2}}\)

\(\Big \downarrow \) 1510

\(\displaystyle \frac {7 c^2 \left (\frac {2 c (c x)^{3/2} \sqrt {a+b x^2}}{5 b}-\frac {6 a c \left (\frac {\sqrt [4]{a} \sqrt {c} \left (\sqrt {a} c+\sqrt {b} c x\right ) \sqrt {\frac {a c^2+b c^2 x^2}{\left (\sqrt {a} c+\sqrt {b} c x\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{b} \sqrt {c x}}{\sqrt [4]{a} \sqrt {c}}\right ),\frac {1}{2}\right )}{2 b^{3/4} \sqrt {a+b x^2}}-\frac {\frac {\sqrt [4]{a} \sqrt {c} \left (\sqrt {a} c+\sqrt {b} c x\right ) \sqrt {\frac {a c^2+b c^2 x^2}{\left (\sqrt {a} c+\sqrt {b} c x\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{b} \sqrt {c x}}{\sqrt [4]{a} \sqrt {c}}\right )|\frac {1}{2}\right )}{\sqrt [4]{b} \sqrt {a+b x^2}}-\frac {c^2 \sqrt {c x} \sqrt {a+b x^2}}{\sqrt {a} c+\sqrt {b} c x}}{\sqrt {b}}\right )}{5 b}\right )}{2 b}-\frac {c (c x)^{7/2}}{b \sqrt {a+b x^2}}\)

Input:

Int[(c*x)^(9/2)/(a + b*x^2)^(3/2),x]
 

Output:

-((c*(c*x)^(7/2))/(b*Sqrt[a + b*x^2])) + (7*c^2*((2*c*(c*x)^(3/2)*Sqrt[a + 
 b*x^2])/(5*b) - (6*a*c*(-((-((c^2*Sqrt[c*x]*Sqrt[a + b*x^2])/(Sqrt[a]*c + 
 Sqrt[b]*c*x)) + (a^(1/4)*Sqrt[c]*(Sqrt[a]*c + Sqrt[b]*c*x)*Sqrt[(a*c^2 + 
b*c^2*x^2)/(Sqrt[a]*c + Sqrt[b]*c*x)^2]*EllipticE[2*ArcTan[(b^(1/4)*Sqrt[c 
*x])/(a^(1/4)*Sqrt[c])], 1/2])/(b^(1/4)*Sqrt[a + b*x^2]))/Sqrt[b]) + (a^(1 
/4)*Sqrt[c]*(Sqrt[a]*c + Sqrt[b]*c*x)*Sqrt[(a*c^2 + b*c^2*x^2)/(Sqrt[a]*c 
+ Sqrt[b]*c*x)^2]*EllipticF[2*ArcTan[(b^(1/4)*Sqrt[c*x])/(a^(1/4)*Sqrt[c]) 
], 1/2])/(2*b^(3/4)*Sqrt[a + b*x^2])))/(5*b)))/(2*b)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 252
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[c*(c*x 
)^(m - 1)*((a + b*x^2)^(p + 1)/(2*b*(p + 1))), x] - Simp[c^2*((m - 1)/(2*b* 
(p + 1)))   Int[(c*x)^(m - 2)*(a + b*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c 
}, x] && LtQ[p, -1] && GtQ[m, 1] &&  !ILtQ[(m + 2*p + 3)/2, 0] && IntBinomi 
alQ[a, b, c, 2, m, p, x]
 

rule 262
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[c*(c*x) 
^(m - 1)*((a + b*x^2)^(p + 1)/(b*(m + 2*p + 1))), x] - Simp[a*c^2*((m - 1)/ 
(b*(m + 2*p + 1)))   Int[(c*x)^(m - 2)*(a + b*x^2)^p, x], x] /; FreeQ[{a, b 
, c, p}, x] && GtQ[m, 2 - 1] && NeQ[m + 2*p + 1, 0] && IntBinomialQ[a, b, c 
, 2, m, p, x]
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 761
Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[( 
1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))* 
EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]
 

rule 834
Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 2]}, S 
imp[1/q   Int[1/Sqrt[a + b*x^4], x], x] - Simp[1/q   Int[(1 - q*x^2)/Sqrt[a 
 + b*x^4], x], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]
 

rule 1510
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = 
 Rt[c/a, 4]}, Simp[(-d)*x*(Sqrt[a + c*x^4]/(a*(1 + q^2*x^2))), x] + Simp[d* 
(1 + q^2*x^2)*(Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]/(q*Sqrt[a + c*x^4]))*E 
llipticE[2*ArcTan[q*x], 1/2], x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e 
}, x] && PosQ[c/a]
 
Maple [A] (verified)

Time = 1.94 (sec) , antiderivative size = 210, normalized size of antiderivative = 0.70

method result size
default \(-\frac {c^{4} \sqrt {c x}\, \left (42 \sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {2}\, \sqrt {\frac {-b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {-\frac {b x}{\sqrt {-a b}}}\, \operatorname {EllipticE}\left (\sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right ) a^{2}-21 \sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {2}\, \sqrt {\frac {-b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {-\frac {b x}{\sqrt {-a b}}}\, \operatorname {EllipticF}\left (\sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right ) a^{2}-4 b^{2} x^{4}-14 a b \,x^{2}\right )}{10 x \sqrt {b \,x^{2}+a}\, b^{3}}\) \(210\)
elliptic \(\frac {\sqrt {c x}\, \sqrt {c x \left (b \,x^{2}+a \right )}\, \left (\frac {c^{5} x^{2} a}{b^{2} \sqrt {\left (x^{2}+\frac {a}{b}\right ) b c x}}+\frac {2 c^{4} x \sqrt {b c \,x^{3}+a c x}}{5 b^{2}}-\frac {21 a \,c^{5} \sqrt {-a b}\, \sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {2 \left (x -\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {b x}{\sqrt {-a b}}}\, \left (-\frac {2 \sqrt {-a b}\, \operatorname {EllipticE}\left (\sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )}{b}+\frac {\sqrt {-a b}\, \operatorname {EllipticF}\left (\sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )}{b}\right )}{10 b^{3} \sqrt {b c \,x^{3}+a c x}}\right )}{c x \sqrt {b \,x^{2}+a}}\) \(247\)
risch \(\frac {2 x^{2} \sqrt {b \,x^{2}+a}\, c^{5}}{5 b^{2} \sqrt {c x}}-\frac {a \left (\frac {8 \sqrt {-a b}\, \sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {2 \left (x -\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {b x}{\sqrt {-a b}}}\, \left (-\frac {2 \sqrt {-a b}\, \operatorname {EllipticE}\left (\sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )}{b}+\frac {\sqrt {-a b}\, \operatorname {EllipticF}\left (\sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )}{b}\right )}{b \sqrt {b c \,x^{3}+a c x}}-5 a \left (\frac {x^{2}}{a \sqrt {\left (x^{2}+\frac {a}{b}\right ) b c x}}-\frac {\sqrt {-a b}\, \sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {2 \left (x -\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {b x}{\sqrt {-a b}}}\, \left (-\frac {2 \sqrt {-a b}\, \operatorname {EllipticE}\left (\sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )}{b}+\frac {\sqrt {-a b}\, \operatorname {EllipticF}\left (\sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )}{b}\right )}{2 a b \sqrt {b c \,x^{3}+a c x}}\right )\right ) c^{5} \sqrt {c x \left (b \,x^{2}+a \right )}}{5 b^{2} \sqrt {c x}\, \sqrt {b \,x^{2}+a}}\) \(412\)

Input:

int((c*x)^(9/2)/(b*x^2+a)^(3/2),x,method=_RETURNVERBOSE)
 

Output:

-1/10*c^4/x*(c*x)^(1/2)*(42*((b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2)*2^(1/2 
)*((-b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2)*(-b/(-a*b)^(1/2)*x)^(1/2)*Ellip 
ticE(((b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2),1/2*2^(1/2))*a^2-21*((b*x+(-a 
*b)^(1/2))/(-a*b)^(1/2))^(1/2)*2^(1/2)*((-b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^ 
(1/2)*(-b/(-a*b)^(1/2)*x)^(1/2)*EllipticF(((b*x+(-a*b)^(1/2))/(-a*b)^(1/2) 
)^(1/2),1/2*2^(1/2))*a^2-4*b^2*x^4-14*a*b*x^2)/(b*x^2+a)^(1/2)/b^3
 

Fricas [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 94, normalized size of antiderivative = 0.31 \[ \int \frac {(c x)^{9/2}}{\left (a+b x^2\right )^{3/2}} \, dx=\frac {21 \, {\left (a b c^{4} x^{2} + a^{2} c^{4}\right )} \sqrt {b c} {\rm weierstrassZeta}\left (-\frac {4 \, a}{b}, 0, {\rm weierstrassPInverse}\left (-\frac {4 \, a}{b}, 0, x\right )\right ) + {\left (2 \, b^{2} c^{4} x^{3} + 7 \, a b c^{4} x\right )} \sqrt {b x^{2} + a} \sqrt {c x}}{5 \, {\left (b^{4} x^{2} + a b^{3}\right )}} \] Input:

integrate((c*x)^(9/2)/(b*x^2+a)^(3/2),x, algorithm="fricas")
 

Output:

1/5*(21*(a*b*c^4*x^2 + a^2*c^4)*sqrt(b*c)*weierstrassZeta(-4*a/b, 0, weier 
strassPInverse(-4*a/b, 0, x)) + (2*b^2*c^4*x^3 + 7*a*b*c^4*x)*sqrt(b*x^2 + 
 a)*sqrt(c*x))/(b^4*x^2 + a*b^3)
 

Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 37.62 (sec) , antiderivative size = 44, normalized size of antiderivative = 0.15 \[ \int \frac {(c x)^{9/2}}{\left (a+b x^2\right )^{3/2}} \, dx=\frac {c^{\frac {9}{2}} x^{\frac {11}{2}} \Gamma \left (\frac {11}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {3}{2}, \frac {11}{4} \\ \frac {15}{4} \end {matrix}\middle | {\frac {b x^{2} e^{i \pi }}{a}} \right )}}{2 a^{\frac {3}{2}} \Gamma \left (\frac {15}{4}\right )} \] Input:

integrate((c*x)**(9/2)/(b*x**2+a)**(3/2),x)
 

Output:

c**(9/2)*x**(11/2)*gamma(11/4)*hyper((3/2, 11/4), (15/4,), b*x**2*exp_pola 
r(I*pi)/a)/(2*a**(3/2)*gamma(15/4))
 

Maxima [F]

\[ \int \frac {(c x)^{9/2}}{\left (a+b x^2\right )^{3/2}} \, dx=\int { \frac {\left (c x\right )^{\frac {9}{2}}}{{\left (b x^{2} + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate((c*x)^(9/2)/(b*x^2+a)^(3/2),x, algorithm="maxima")
 

Output:

integrate((c*x)^(9/2)/(b*x^2 + a)^(3/2), x)
 

Giac [F]

\[ \int \frac {(c x)^{9/2}}{\left (a+b x^2\right )^{3/2}} \, dx=\int { \frac {\left (c x\right )^{\frac {9}{2}}}{{\left (b x^{2} + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate((c*x)^(9/2)/(b*x^2+a)^(3/2),x, algorithm="giac")
 

Output:

integrate((c*x)^(9/2)/(b*x^2 + a)^(3/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(c x)^{9/2}}{\left (a+b x^2\right )^{3/2}} \, dx=\int \frac {{\left (c\,x\right )}^{9/2}}{{\left (b\,x^2+a\right )}^{3/2}} \,d x \] Input:

int((c*x)^(9/2)/(a + b*x^2)^(3/2),x)
 

Output:

int((c*x)^(9/2)/(a + b*x^2)^(3/2), x)
 

Reduce [F]

\[ \int \frac {(c x)^{9/2}}{\left (a+b x^2\right )^{3/2}} \, dx=\frac {\sqrt {c}\, c^{4} \left (-14 \sqrt {x}\, \sqrt {b \,x^{2}+a}\, a x +2 \sqrt {x}\, \sqrt {b \,x^{2}+a}\, b \,x^{3}+21 \left (\int \frac {\sqrt {x}\, \sqrt {b \,x^{2}+a}}{b^{2} x^{4}+2 a b \,x^{2}+a^{2}}d x \right ) a^{3}+21 \left (\int \frac {\sqrt {x}\, \sqrt {b \,x^{2}+a}}{b^{2} x^{4}+2 a b \,x^{2}+a^{2}}d x \right ) a^{2} b \,x^{2}\right )}{5 b^{2} \left (b \,x^{2}+a \right )} \] Input:

int((c*x)^(9/2)/(b*x^2+a)^(3/2),x)
 

Output:

(sqrt(c)*c**4*( - 14*sqrt(x)*sqrt(a + b*x**2)*a*x + 2*sqrt(x)*sqrt(a + b*x 
**2)*b*x**3 + 21*int((sqrt(x)*sqrt(a + b*x**2))/(a**2 + 2*a*b*x**2 + b**2* 
x**4),x)*a**3 + 21*int((sqrt(x)*sqrt(a + b*x**2))/(a**2 + 2*a*b*x**2 + b** 
2*x**4),x)*a**2*b*x**2))/(5*b**2*(a + b*x**2))