\(\int \frac {\sqrt {c x}}{(a+b x^2)^{3/2}} \, dx\) [634]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [C] (verification not implemented)
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 19, antiderivative size = 266 \[ \int \frac {\sqrt {c x}}{\left (a+b x^2\right )^{3/2}} \, dx=\frac {(c x)^{3/2}}{a c \sqrt {a+b x^2}}-\frac {\sqrt {c x} \sqrt {a+b x^2}}{a \sqrt {b} \left (\sqrt {a}+\sqrt {b} x\right )}+\frac {\sqrt {c} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{b} \sqrt {c x}}{\sqrt [4]{a} \sqrt {c}}\right )|\frac {1}{2}\right )}{a^{3/4} b^{3/4} \sqrt {a+b x^2}}-\frac {\sqrt {c} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{b} \sqrt {c x}}{\sqrt [4]{a} \sqrt {c}}\right ),\frac {1}{2}\right )}{2 a^{3/4} b^{3/4} \sqrt {a+b x^2}} \] Output:

(c*x)^(3/2)/a/c/(b*x^2+a)^(1/2)-(c*x)^(1/2)*(b*x^2+a)^(1/2)/a/b^(1/2)/(a^( 
1/2)+b^(1/2)*x)+c^(1/2)*(a^(1/2)+b^(1/2)*x)*((b*x^2+a)/(a^(1/2)+b^(1/2)*x) 
^2)^(1/2)*EllipticE(sin(2*arctan(b^(1/4)*(c*x)^(1/2)/a^(1/4)/c^(1/2))),1/2 
*2^(1/2))/a^(3/4)/b^(3/4)/(b*x^2+a)^(1/2)-1/2*c^(1/2)*(a^(1/2)+b^(1/2)*x)* 
((b*x^2+a)/(a^(1/2)+b^(1/2)*x)^2)^(1/2)*InverseJacobiAM(2*arctan(b^(1/4)*( 
c*x)^(1/2)/a^(1/4)/c^(1/2)),1/2*2^(1/2))/a^(3/4)/b^(3/4)/(b*x^2+a)^(1/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.01 (sec) , antiderivative size = 59, normalized size of antiderivative = 0.22 \[ \int \frac {\sqrt {c x}}{\left (a+b x^2\right )^{3/2}} \, dx=\frac {2 x \sqrt {c x} \sqrt {1+\frac {b x^2}{a}} \operatorname {Hypergeometric2F1}\left (\frac {3}{4},\frac {3}{2},\frac {7}{4},-\frac {b x^2}{a}\right )}{3 a \sqrt {a+b x^2}} \] Input:

Integrate[Sqrt[c*x]/(a + b*x^2)^(3/2),x]
 

Output:

(2*x*Sqrt[c*x]*Sqrt[1 + (b*x^2)/a]*Hypergeometric2F1[3/4, 3/2, 7/4, -((b*x 
^2)/a)])/(3*a*Sqrt[a + b*x^2])
 

Rubi [A] (verified)

Time = 0.34 (sec) , antiderivative size = 307, normalized size of antiderivative = 1.15, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.316, Rules used = {253, 266, 834, 27, 761, 1510}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {c x}}{\left (a+b x^2\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 253

\(\displaystyle \frac {(c x)^{3/2}}{a c \sqrt {a+b x^2}}-\frac {\int \frac {\sqrt {c x}}{\sqrt {b x^2+a}}dx}{2 a}\)

\(\Big \downarrow \) 266

\(\displaystyle \frac {(c x)^{3/2}}{a c \sqrt {a+b x^2}}-\frac {\int \frac {c x}{\sqrt {b x^2+a}}d\sqrt {c x}}{a c}\)

\(\Big \downarrow \) 834

\(\displaystyle \frac {(c x)^{3/2}}{a c \sqrt {a+b x^2}}-\frac {\frac {\sqrt {a} c \int \frac {1}{\sqrt {b x^2+a}}d\sqrt {c x}}{\sqrt {b}}-\frac {\sqrt {a} c \int \frac {\sqrt {a} c-\sqrt {b} c x}{\sqrt {a} c \sqrt {b x^2+a}}d\sqrt {c x}}{\sqrt {b}}}{a c}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {(c x)^{3/2}}{a c \sqrt {a+b x^2}}-\frac {\frac {\sqrt {a} c \int \frac {1}{\sqrt {b x^2+a}}d\sqrt {c x}}{\sqrt {b}}-\frac {\int \frac {\sqrt {a} c-\sqrt {b} c x}{\sqrt {b x^2+a}}d\sqrt {c x}}{\sqrt {b}}}{a c}\)

\(\Big \downarrow \) 761

\(\displaystyle \frac {(c x)^{3/2}}{a c \sqrt {a+b x^2}}-\frac {\frac {\sqrt [4]{a} \sqrt {c} \left (\sqrt {a} c+\sqrt {b} c x\right ) \sqrt {\frac {a c^2+b c^2 x^2}{\left (\sqrt {a} c+\sqrt {b} c x\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{b} \sqrt {c x}}{\sqrt [4]{a} \sqrt {c}}\right ),\frac {1}{2}\right )}{2 b^{3/4} \sqrt {a+b x^2}}-\frac {\int \frac {\sqrt {a} c-\sqrt {b} c x}{\sqrt {b x^2+a}}d\sqrt {c x}}{\sqrt {b}}}{a c}\)

\(\Big \downarrow \) 1510

\(\displaystyle \frac {(c x)^{3/2}}{a c \sqrt {a+b x^2}}-\frac {\frac {\sqrt [4]{a} \sqrt {c} \left (\sqrt {a} c+\sqrt {b} c x\right ) \sqrt {\frac {a c^2+b c^2 x^2}{\left (\sqrt {a} c+\sqrt {b} c x\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{b} \sqrt {c x}}{\sqrt [4]{a} \sqrt {c}}\right ),\frac {1}{2}\right )}{2 b^{3/4} \sqrt {a+b x^2}}-\frac {\frac {\sqrt [4]{a} \sqrt {c} \left (\sqrt {a} c+\sqrt {b} c x\right ) \sqrt {\frac {a c^2+b c^2 x^2}{\left (\sqrt {a} c+\sqrt {b} c x\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{b} \sqrt {c x}}{\sqrt [4]{a} \sqrt {c}}\right )|\frac {1}{2}\right )}{\sqrt [4]{b} \sqrt {a+b x^2}}-\frac {c^2 \sqrt {c x} \sqrt {a+b x^2}}{\sqrt {a} c+\sqrt {b} c x}}{\sqrt {b}}}{a c}\)

Input:

Int[Sqrt[c*x]/(a + b*x^2)^(3/2),x]
 

Output:

(c*x)^(3/2)/(a*c*Sqrt[a + b*x^2]) - (-((-((c^2*Sqrt[c*x]*Sqrt[a + b*x^2])/ 
(Sqrt[a]*c + Sqrt[b]*c*x)) + (a^(1/4)*Sqrt[c]*(Sqrt[a]*c + Sqrt[b]*c*x)*Sq 
rt[(a*c^2 + b*c^2*x^2)/(Sqrt[a]*c + Sqrt[b]*c*x)^2]*EllipticE[2*ArcTan[(b^ 
(1/4)*Sqrt[c*x])/(a^(1/4)*Sqrt[c])], 1/2])/(b^(1/4)*Sqrt[a + b*x^2]))/Sqrt 
[b]) + (a^(1/4)*Sqrt[c]*(Sqrt[a]*c + Sqrt[b]*c*x)*Sqrt[(a*c^2 + b*c^2*x^2) 
/(Sqrt[a]*c + Sqrt[b]*c*x)^2]*EllipticF[2*ArcTan[(b^(1/4)*Sqrt[c*x])/(a^(1 
/4)*Sqrt[c])], 1/2])/(2*b^(3/4)*Sqrt[a + b*x^2]))/(a*c)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 253
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-(c*x 
)^(m + 1))*((a + b*x^2)^(p + 1)/(2*a*c*(p + 1))), x] + Simp[(m + 2*p + 3)/( 
2*a*(p + 1))   Int[(c*x)^m*(a + b*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, m 
}, x] && LtQ[p, -1] && IntBinomialQ[a, b, c, 2, m, p, x]
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 761
Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[( 
1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))* 
EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]
 

rule 834
Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 2]}, S 
imp[1/q   Int[1/Sqrt[a + b*x^4], x], x] - Simp[1/q   Int[(1 - q*x^2)/Sqrt[a 
 + b*x^4], x], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]
 

rule 1510
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = 
 Rt[c/a, 4]}, Simp[(-d)*x*(Sqrt[a + c*x^4]/(a*(1 + q^2*x^2))), x] + Simp[d* 
(1 + q^2*x^2)*(Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]/(q*Sqrt[a + c*x^4]))*E 
llipticE[2*ArcTan[q*x], 1/2], x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e 
}, x] && PosQ[c/a]
 
Maple [A] (verified)

Time = 0.41 (sec) , antiderivative size = 197, normalized size of antiderivative = 0.74

method result size
default \(-\frac {\sqrt {c x}\, \left (2 \sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {2}\, \sqrt {\frac {-b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {-\frac {b x}{\sqrt {-a b}}}\, \operatorname {EllipticE}\left (\sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right ) a -\sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {2}\, \sqrt {\frac {-b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {-\frac {b x}{\sqrt {-a b}}}\, \operatorname {EllipticF}\left (\sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right ) a -2 b \,x^{2}\right )}{2 \sqrt {b \,x^{2}+a}\, b x a}\) \(197\)
elliptic \(\frac {\sqrt {c x}\, \sqrt {c x \left (b \,x^{2}+a \right )}\, \left (\frac {c \,x^{2}}{a \sqrt {\left (x^{2}+\frac {a}{b}\right ) b c x}}-\frac {c \sqrt {-a b}\, \sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {2 \left (x -\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {b x}{\sqrt {-a b}}}\, \left (-\frac {2 \sqrt {-a b}\, \operatorname {EllipticE}\left (\sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )}{b}+\frac {\sqrt {-a b}\, \operatorname {EllipticF}\left (\sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )}{b}\right )}{2 a b \sqrt {b c \,x^{3}+a c x}}\right )}{c x \sqrt {b \,x^{2}+a}}\) \(222\)

Input:

int((c*x)^(1/2)/(b*x^2+a)^(3/2),x,method=_RETURNVERBOSE)
 

Output:

-1/2*(c*x)^(1/2)*(2*((b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2)*2^(1/2)*((-b*x 
+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2)*(-b/(-a*b)^(1/2)*x)^(1/2)*EllipticE(((b 
*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2),1/2*2^(1/2))*a-((b*x+(-a*b)^(1/2))/(- 
a*b)^(1/2))^(1/2)*2^(1/2)*((-b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2)*(-b/(-a 
*b)^(1/2)*x)^(1/2)*EllipticF(((b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2),1/2*2 
^(1/2))*a-2*b*x^2)/(b*x^2+a)^(1/2)/b/x/a
 

Fricas [A] (verification not implemented)

Time = 0.07 (sec) , antiderivative size = 65, normalized size of antiderivative = 0.24 \[ \int \frac {\sqrt {c x}}{\left (a+b x^2\right )^{3/2}} \, dx=\frac {\sqrt {b x^{2} + a} \sqrt {c x} b x + {\left (b x^{2} + a\right )} \sqrt {b c} {\rm weierstrassZeta}\left (-\frac {4 \, a}{b}, 0, {\rm weierstrassPInverse}\left (-\frac {4 \, a}{b}, 0, x\right )\right )}{a b^{2} x^{2} + a^{2} b} \] Input:

integrate((c*x)^(1/2)/(b*x^2+a)^(3/2),x, algorithm="fricas")
 

Output:

(sqrt(b*x^2 + a)*sqrt(c*x)*b*x + (b*x^2 + a)*sqrt(b*c)*weierstrassZeta(-4* 
a/b, 0, weierstrassPInverse(-4*a/b, 0, x)))/(a*b^2*x^2 + a^2*b)
 

Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.66 (sec) , antiderivative size = 44, normalized size of antiderivative = 0.17 \[ \int \frac {\sqrt {c x}}{\left (a+b x^2\right )^{3/2}} \, dx=\frac {\sqrt {c} x^{\frac {3}{2}} \Gamma \left (\frac {3}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {3}{4}, \frac {3}{2} \\ \frac {7}{4} \end {matrix}\middle | {\frac {b x^{2} e^{i \pi }}{a}} \right )}}{2 a^{\frac {3}{2}} \Gamma \left (\frac {7}{4}\right )} \] Input:

integrate((c*x)**(1/2)/(b*x**2+a)**(3/2),x)
 

Output:

sqrt(c)*x**(3/2)*gamma(3/4)*hyper((3/4, 3/2), (7/4,), b*x**2*exp_polar(I*p 
i)/a)/(2*a**(3/2)*gamma(7/4))
 

Maxima [F]

\[ \int \frac {\sqrt {c x}}{\left (a+b x^2\right )^{3/2}} \, dx=\int { \frac {\sqrt {c x}}{{\left (b x^{2} + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate((c*x)^(1/2)/(b*x^2+a)^(3/2),x, algorithm="maxima")
 

Output:

integrate(sqrt(c*x)/(b*x^2 + a)^(3/2), x)
 

Giac [F]

\[ \int \frac {\sqrt {c x}}{\left (a+b x^2\right )^{3/2}} \, dx=\int { \frac {\sqrt {c x}}{{\left (b x^{2} + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate((c*x)^(1/2)/(b*x^2+a)^(3/2),x, algorithm="giac")
 

Output:

integrate(sqrt(c*x)/(b*x^2 + a)^(3/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {c x}}{\left (a+b x^2\right )^{3/2}} \, dx=\int \frac {\sqrt {c\,x}}{{\left (b\,x^2+a\right )}^{3/2}} \,d x \] Input:

int((c*x)^(1/2)/(a + b*x^2)^(3/2),x)
 

Output:

int((c*x)^(1/2)/(a + b*x^2)^(3/2), x)
                                                                                    
                                                                                    
 

Reduce [F]

\[ \int \frac {\sqrt {c x}}{\left (a+b x^2\right )^{3/2}} \, dx=\sqrt {c}\, \left (\int \frac {\sqrt {x}\, \sqrt {b \,x^{2}+a}}{b^{2} x^{4}+2 a b \,x^{2}+a^{2}}d x \right ) \] Input:

int((c*x)^(1/2)/(b*x^2+a)^(3/2),x)
 

Output:

sqrt(c)*int((sqrt(x)*sqrt(a + b*x**2))/(a**2 + 2*a*b*x**2 + b**2*x**4),x)