\(\int \frac {1}{(c x)^{3/2} (3 a-2 a x^2)^{3/2}} \, dx\) [660]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 22, antiderivative size = 198 \[ \int \frac {1}{(c x)^{3/2} \left (3 a-2 a x^2\right )^{3/2}} \, dx=\frac {1}{3 a c \sqrt {c x} \sqrt {3 a-2 a x^2}}-\frac {\sqrt {3 a-2 a x^2}}{3 a^2 c \sqrt {c x}}-\frac {\sqrt [4]{2} \sqrt {3-2 x^2} E\left (\left .\arcsin \left (\frac {\sqrt [4]{\frac {2}{3}} \sqrt {c x}}{\sqrt {c}}\right )\right |-1\right )}{3^{3/4} a c^{3/2} \sqrt {3 a-2 a x^2}}+\frac {\sqrt [4]{2} \sqrt {3-2 x^2} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [4]{\frac {2}{3}} \sqrt {c x}}{\sqrt {c}}\right ),-1\right )}{3^{3/4} a c^{3/2} \sqrt {3 a-2 a x^2}} \] Output:

1/3/a/c/(c*x)^(1/2)/(-2*a*x^2+3*a)^(1/2)-1/3*(-2*a*x^2+3*a)^(1/2)/a^2/c/(c 
*x)^(1/2)-1/3*2^(1/4)*(-2*x^2+3)^(1/2)*EllipticE(1/3*2^(1/4)*3^(3/4)*(c*x) 
^(1/2)/c^(1/2),I)*3^(1/4)/a/c^(3/2)/(-2*a*x^2+3*a)^(1/2)+1/3*2^(1/4)*(-2*x 
^2+3)^(1/2)*EllipticF(1/3*2^(1/4)*3^(3/4)*(c*x)^(1/2)/c^(1/2),I)*3^(1/4)/a 
/c^(3/2)/(-2*a*x^2+3*a)^(1/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.02 (sec) , antiderivative size = 58, normalized size of antiderivative = 0.29 \[ \int \frac {1}{(c x)^{3/2} \left (3 a-2 a x^2\right )^{3/2}} \, dx=-\frac {2 x \left (3-2 x^2\right )^{3/2} \operatorname {Hypergeometric2F1}\left (-\frac {1}{4},\frac {3}{2},\frac {3}{4},\frac {2 x^2}{3}\right )}{3 \sqrt {3} (c x)^{3/2} \left (a \left (3-2 x^2\right )\right )^{3/2}} \] Input:

Integrate[1/((c*x)^(3/2)*(3*a - 2*a*x^2)^(3/2)),x]
 

Output:

(-2*x*(3 - 2*x^2)^(3/2)*Hypergeometric2F1[-1/4, 3/2, 3/4, (2*x^2)/3])/(3*S 
qrt[3]*(c*x)^(3/2)*(a*(3 - 2*x^2))^(3/2))
 

Rubi [A] (verified)

Time = 0.24 (sec) , antiderivative size = 146, normalized size of antiderivative = 0.74, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.318, Rules used = {253, 264, 261, 260, 27, 259, 327}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\left (3 a-2 a x^2\right )^{3/2} (c x)^{3/2}} \, dx\)

\(\Big \downarrow \) 253

\(\displaystyle \frac {\int \frac {1}{(c x)^{3/2} \sqrt {3 a-2 a x^2}}dx}{2 a}+\frac {1}{3 a c \sqrt {3 a-2 a x^2} \sqrt {c x}}\)

\(\Big \downarrow \) 264

\(\displaystyle \frac {-\frac {2 \int \frac {\sqrt {c x}}{\sqrt {3 a-2 a x^2}}dx}{3 c^2}-\frac {2 \sqrt {3 a-2 a x^2}}{3 a c \sqrt {c x}}}{2 a}+\frac {1}{3 a c \sqrt {3 a-2 a x^2} \sqrt {c x}}\)

\(\Big \downarrow \) 261

\(\displaystyle \frac {-\frac {2 \sqrt {c x} \int \frac {\sqrt {x}}{\sqrt {3 a-2 a x^2}}dx}{3 c^2 \sqrt {x}}-\frac {2 \sqrt {3 a-2 a x^2}}{3 a c \sqrt {c x}}}{2 a}+\frac {1}{3 a c \sqrt {3 a-2 a x^2} \sqrt {c x}}\)

\(\Big \downarrow \) 260

\(\displaystyle \frac {-\frac {2 \sqrt {3-2 x^2} \sqrt {c x} \int \frac {\sqrt {3} \sqrt {x}}{\sqrt {3-2 x^2}}dx}{3 \sqrt {3} c^2 \sqrt {x} \sqrt {3 a-2 a x^2}}-\frac {2 \sqrt {3 a-2 a x^2}}{3 a c \sqrt {c x}}}{2 a}+\frac {1}{3 a c \sqrt {3 a-2 a x^2} \sqrt {c x}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {-\frac {2 \sqrt {3-2 x^2} \sqrt {c x} \int \frac {\sqrt {x}}{\sqrt {3-2 x^2}}dx}{3 c^2 \sqrt {x} \sqrt {3 a-2 a x^2}}-\frac {2 \sqrt {3 a-2 a x^2}}{3 a c \sqrt {c x}}}{2 a}+\frac {1}{3 a c \sqrt {3 a-2 a x^2} \sqrt {c x}}\)

\(\Big \downarrow \) 259

\(\displaystyle \frac {\frac {2 \sqrt [4]{2} \sqrt {3-2 x^2} \sqrt {c x} \int \frac {\sqrt {\frac {1}{3} \left (\sqrt {6} x-3\right )+1}}{\sqrt {\frac {1}{6} \left (\sqrt {6} x-3\right )+1}}d\frac {\sqrt {3-\sqrt {6} x}}{\sqrt {6}}}{3^{3/4} c^2 \sqrt {x} \sqrt {3 a-2 a x^2}}-\frac {2 \sqrt {3 a-2 a x^2}}{3 a c \sqrt {c x}}}{2 a}+\frac {1}{3 a c \sqrt {3 a-2 a x^2} \sqrt {c x}}\)

\(\Big \downarrow \) 327

\(\displaystyle \frac {\frac {2 \sqrt [4]{2} \sqrt {3-2 x^2} \sqrt {c x} E\left (\left .\arcsin \left (\frac {\sqrt {3-\sqrt {6} x}}{\sqrt {6}}\right )\right |2\right )}{3^{3/4} c^2 \sqrt {x} \sqrt {3 a-2 a x^2}}-\frac {2 \sqrt {3 a-2 a x^2}}{3 a c \sqrt {c x}}}{2 a}+\frac {1}{3 a c \sqrt {3 a-2 a x^2} \sqrt {c x}}\)

Input:

Int[1/((c*x)^(3/2)*(3*a - 2*a*x^2)^(3/2)),x]
 

Output:

1/(3*a*c*Sqrt[c*x]*Sqrt[3*a - 2*a*x^2]) + ((-2*Sqrt[3*a - 2*a*x^2])/(3*a*c 
*Sqrt[c*x]) + (2*2^(1/4)*Sqrt[c*x]*Sqrt[3 - 2*x^2]*EllipticE[ArcSin[Sqrt[3 
 - Sqrt[6]*x]/Sqrt[6]], 2])/(3^(3/4)*c^2*Sqrt[x]*Sqrt[3*a - 2*a*x^2]))/(2* 
a)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 253
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-(c*x 
)^(m + 1))*((a + b*x^2)^(p + 1)/(2*a*c*(p + 1))), x] + Simp[(m + 2*p + 3)/( 
2*a*(p + 1))   Int[(c*x)^m*(a + b*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, m 
}, x] && LtQ[p, -1] && IntBinomialQ[a, b, c, 2, m, p, x]
 

rule 259
Int[Sqrt[x_]/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[-2/(Sqrt[a]*(-b/a 
)^(3/4))   Subst[Int[Sqrt[1 - 2*x^2]/Sqrt[1 - x^2], x], x, Sqrt[1 - Sqrt[-b 
/a]*x]/Sqrt[2]], x] /; FreeQ[{a, b}, x] && GtQ[-b/a, 0] && GtQ[a, 0]
 

rule 260
Int[Sqrt[x_]/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[Sqrt[1 + b*(x^2/a 
)]/Sqrt[a + b*x^2]   Int[Sqrt[x]/Sqrt[1 + b*(x^2/a)], x], x] /; FreeQ[{a, b 
}, x] && GtQ[-b/a, 0] &&  !GtQ[a, 0]
 

rule 261
Int[Sqrt[(c_)*(x_)]/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[Sqrt[c*x]/ 
Sqrt[x]   Int[Sqrt[x]/Sqrt[a + b*x^2], x], x] /; FreeQ[{a, b, c}, x] && GtQ 
[-b/a, 0]
 

rule 264
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(c*x)^( 
m + 1)*((a + b*x^2)^(p + 1)/(a*c*(m + 1))), x] - Simp[b*((m + 2*p + 3)/(a*c 
^2*(m + 1)))   Int[(c*x)^(m + 2)*(a + b*x^2)^p, x], x] /; FreeQ[{a, b, c, p 
}, x] && LtQ[m, -1] && IntBinomialQ[a, b, c, 2, m, p, x]
 

rule 327
Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[ 
(Sqrt[a]/(Sqrt[c]*Rt[-d/c, 2]))*EllipticE[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d) 
)], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 0]
 
Maple [A] (verified)

Time = 0.72 (sec) , antiderivative size = 216, normalized size of antiderivative = 1.09

method result size
elliptic \(\frac {\sqrt {-c x a \left (2 x^{2}-3\right )}\, \left (\frac {2 x^{2}}{9 a c \sqrt {-2 \left (x^{2}-\frac {3}{2}\right ) a c x}}-\frac {2 \left (-2 a c \,x^{2}+3 a c \right )}{9 a^{2} c^{2} \sqrt {x \left (-2 a c \,x^{2}+3 a c \right )}}-\frac {\sqrt {6}\, \sqrt {3}\, \sqrt {\left (x +\frac {\sqrt {6}}{2}\right ) \sqrt {6}}\, \sqrt {-6 \left (x -\frac {\sqrt {6}}{2}\right ) \sqrt {6}}\, \sqrt {-3 \sqrt {6}\, x}\, \left (-\sqrt {6}\, \operatorname {EllipticE}\left (\frac {\sqrt {3}\, \sqrt {\left (x +\frac {\sqrt {6}}{2}\right ) \sqrt {6}}}{3}, \frac {\sqrt {2}}{2}\right )+\frac {\sqrt {6}\, \operatorname {EllipticF}\left (\frac {\sqrt {3}\, \sqrt {\left (x +\frac {\sqrt {6}}{2}\right ) \sqrt {6}}}{3}, \frac {\sqrt {2}}{2}\right )}{2}\right )}{162 a c \sqrt {-2 a c \,x^{3}+3 a c x}}\right )}{\sqrt {c x}\, \sqrt {-a \left (2 x^{2}-3\right )}}\) \(216\)
default \(-\frac {\sqrt {-a \left (2 x^{2}-3\right )}\, \left (2 \sqrt {\left (-2 x +\sqrt {3}\, \sqrt {2}\right ) \sqrt {3}\, \sqrt {2}}\, \sqrt {3}\, \sqrt {-\sqrt {3}\, \sqrt {2}\, x}\, \operatorname {EllipticE}\left (\frac {\sqrt {3}\, \sqrt {2}\, \sqrt {\left (2 x +\sqrt {3}\, \sqrt {2}\right ) \sqrt {3}\, \sqrt {2}}}{6}, \frac {\sqrt {2}}{2}\right ) \sqrt {2}\, \sqrt {\left (2 x +\sqrt {3}\, \sqrt {2}\right ) \sqrt {3}\, \sqrt {2}}-\sqrt {\left (-2 x +\sqrt {3}\, \sqrt {2}\right ) \sqrt {3}\, \sqrt {2}}\, \sqrt {3}\, \sqrt {-\sqrt {3}\, \sqrt {2}\, x}\, \operatorname {EllipticF}\left (\frac {\sqrt {3}\, \sqrt {2}\, \sqrt {\left (2 x +\sqrt {3}\, \sqrt {2}\right ) \sqrt {3}\, \sqrt {2}}}{6}, \frac {\sqrt {2}}{2}\right ) \sqrt {2}\, \sqrt {\left (2 x +\sqrt {3}\, \sqrt {2}\right ) \sqrt {3}\, \sqrt {2}}+24 x^{2}-24\right )}{36 a^{2} c \sqrt {c x}\, \left (2 x^{2}-3\right )}\) \(228\)

Input:

int(1/(c*x)^(3/2)/(-2*a*x^2+3*a)^(3/2),x,method=_RETURNVERBOSE)
 

Output:

(-c*x*a*(2*x^2-3))^(1/2)/(c*x)^(1/2)/(-a*(2*x^2-3))^(1/2)*(2/9/a/c*x^2/(-2 
*(x^2-3/2)*a*c*x)^(1/2)-2/9*(-2*a*c*x^2+3*a*c)/a^2/c^2/(x*(-2*a*c*x^2+3*a* 
c))^(1/2)-1/162/a/c*6^(1/2)*3^(1/2)*((x+1/2*6^(1/2))*6^(1/2))^(1/2)*(-6*(x 
-1/2*6^(1/2))*6^(1/2))^(1/2)*(-3*6^(1/2)*x)^(1/2)/(-2*a*c*x^3+3*a*c*x)^(1/ 
2)*(-6^(1/2)*EllipticE(1/3*3^(1/2)*((x+1/2*6^(1/2))*6^(1/2))^(1/2),1/2*2^( 
1/2))+1/2*6^(1/2)*EllipticF(1/3*3^(1/2)*((x+1/2*6^(1/2))*6^(1/2))^(1/2),1/ 
2*2^(1/2))))
 

Fricas [A] (verification not implemented)

Time = 0.07 (sec) , antiderivative size = 76, normalized size of antiderivative = 0.38 \[ \int \frac {1}{(c x)^{3/2} \left (3 a-2 a x^2\right )^{3/2}} \, dx=-\frac {\sqrt {2} {\left (2 \, x^{3} - 3 \, x\right )} \sqrt {-a c} {\rm weierstrassZeta}\left (6, 0, {\rm weierstrassPInverse}\left (6, 0, x\right )\right ) + 2 \, \sqrt {-2 \, a x^{2} + 3 \, a} \sqrt {c x} {\left (x^{2} - 1\right )}}{3 \, {\left (2 \, a^{2} c^{2} x^{3} - 3 \, a^{2} c^{2} x\right )}} \] Input:

integrate(1/(c*x)^(3/2)/(-2*a*x^2+3*a)^(3/2),x, algorithm="fricas")
 

Output:

-1/3*(sqrt(2)*(2*x^3 - 3*x)*sqrt(-a*c)*weierstrassZeta(6, 0, weierstrassPI 
nverse(6, 0, x)) + 2*sqrt(-2*a*x^2 + 3*a)*sqrt(c*x)*(x^2 - 1))/(2*a^2*c^2* 
x^3 - 3*a^2*c^2*x)
 

Sympy [A] (verification not implemented)

Time = 1.56 (sec) , antiderivative size = 54, normalized size of antiderivative = 0.27 \[ \int \frac {1}{(c x)^{3/2} \left (3 a-2 a x^2\right )^{3/2}} \, dx=\frac {\sqrt {3} \Gamma \left (- \frac {1}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {1}{4}, \frac {3}{2} \\ \frac {3}{4} \end {matrix}\middle | {\frac {2 x^{2} e^{2 i \pi }}{3}} \right )}}{18 a^{\frac {3}{2}} c^{\frac {3}{2}} \sqrt {x} \Gamma \left (\frac {3}{4}\right )} \] Input:

integrate(1/(c*x)**(3/2)/(-2*a*x**2+3*a)**(3/2),x)
 

Output:

sqrt(3)*gamma(-1/4)*hyper((-1/4, 3/2), (3/4,), 2*x**2*exp_polar(2*I*pi)/3) 
/(18*a**(3/2)*c**(3/2)*sqrt(x)*gamma(3/4))
 

Maxima [F]

\[ \int \frac {1}{(c x)^{3/2} \left (3 a-2 a x^2\right )^{3/2}} \, dx=\int { \frac {1}{{\left (-2 \, a x^{2} + 3 \, a\right )}^{\frac {3}{2}} \left (c x\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate(1/(c*x)^(3/2)/(-2*a*x^2+3*a)^(3/2),x, algorithm="maxima")
 

Output:

integrate(1/((-2*a*x^2 + 3*a)^(3/2)*(c*x)^(3/2)), x)
 

Giac [F]

\[ \int \frac {1}{(c x)^{3/2} \left (3 a-2 a x^2\right )^{3/2}} \, dx=\int { \frac {1}{{\left (-2 \, a x^{2} + 3 \, a\right )}^{\frac {3}{2}} \left (c x\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate(1/(c*x)^(3/2)/(-2*a*x^2+3*a)^(3/2),x, algorithm="giac")
 

Output:

integrate(1/((-2*a*x^2 + 3*a)^(3/2)*(c*x)^(3/2)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{(c x)^{3/2} \left (3 a-2 a x^2\right )^{3/2}} \, dx=\int \frac {1}{{\left (c\,x\right )}^{3/2}\,{\left (3\,a-2\,a\,x^2\right )}^{3/2}} \,d x \] Input:

int(1/((c*x)^(3/2)*(3*a - 2*a*x^2)^(3/2)),x)
 

Output:

int(1/((c*x)^(3/2)*(3*a - 2*a*x^2)^(3/2)), x)
 

Reduce [F]

\[ \int \frac {1}{(c x)^{3/2} \left (3 a-2 a x^2\right )^{3/2}} \, dx=\frac {\sqrt {c}\, \sqrt {a}\, \left (\int \frac {\sqrt {x}\, \sqrt {-2 x^{2}+3}}{4 x^{6}-12 x^{4}+9 x^{2}}d x \right )}{a^{2} c^{2}} \] Input:

int(1/(c*x)^(3/2)/(-2*a*x^2+3*a)^(3/2),x)
 

Output:

(sqrt(c)*sqrt(a)*int((sqrt(x)*sqrt( - 2*x**2 + 3))/(4*x**6 - 12*x**4 + 9*x 
**2),x))/(a**2*c**2)