\(\int x^2 \sqrt [3]{a+b x^2} \, dx\) [722]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [F]
Fricas [F]
Sympy [A] (verification not implemented)
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 15, antiderivative size = 290 \[ \int x^2 \sqrt [3]{a+b x^2} \, dx=\frac {6 a x \sqrt [3]{a+b x^2}}{55 b}+\frac {3}{11} x^3 \sqrt [3]{a+b x^2}+\frac {6\ 3^{3/4} \sqrt {2-\sqrt {3}} a^2 \left (\sqrt [3]{a}-\sqrt [3]{a+b x^2}\right ) \sqrt {\frac {a^{2/3}+\sqrt [3]{a} \sqrt [3]{a+b x^2}+\left (a+b x^2\right )^{2/3}}{\left (\left (1-\sqrt {3}\right ) \sqrt [3]{a}-\sqrt [3]{a+b x^2}\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\left (1+\sqrt {3}\right ) \sqrt [3]{a}-\sqrt [3]{a+b x^2}}{\left (1-\sqrt {3}\right ) \sqrt [3]{a}-\sqrt [3]{a+b x^2}}\right ),-7+4 \sqrt {3}\right )}{55 b^2 x \sqrt {-\frac {\sqrt [3]{a} \left (\sqrt [3]{a}-\sqrt [3]{a+b x^2}\right )}{\left (\left (1-\sqrt {3}\right ) \sqrt [3]{a}-\sqrt [3]{a+b x^2}\right )^2}}} \] Output:

6/55*a*x*(b*x^2+a)^(1/3)/b+3/11*x^3*(b*x^2+a)^(1/3)+6/55*3^(3/4)*(1/2*6^(1 
/2)-1/2*2^(1/2))*a^2*(a^(1/3)-(b*x^2+a)^(1/3))*((a^(2/3)+a^(1/3)*(b*x^2+a) 
^(1/3)+(b*x^2+a)^(2/3))/((1-3^(1/2))*a^(1/3)-(b*x^2+a)^(1/3))^2)^(1/2)*Ell 
ipticF(((1+3^(1/2))*a^(1/3)-(b*x^2+a)^(1/3))/((1-3^(1/2))*a^(1/3)-(b*x^2+a 
)^(1/3)),2*I-I*3^(1/2))/b^2/x/(-a^(1/3)*(a^(1/3)-(b*x^2+a)^(1/3))/((1-3^(1 
/2))*a^(1/3)-(b*x^2+a)^(1/3))^2)^(1/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 4.40 (sec) , antiderivative size = 62, normalized size of antiderivative = 0.21 \[ \int x^2 \sqrt [3]{a+b x^2} \, dx=\frac {3 x \sqrt [3]{a+b x^2} \left (a+b x^2-\frac {a \operatorname {Hypergeometric2F1}\left (-\frac {1}{3},\frac {1}{2},\frac {3}{2},-\frac {b x^2}{a}\right )}{\sqrt [3]{1+\frac {b x^2}{a}}}\right )}{11 b} \] Input:

Integrate[x^2*(a + b*x^2)^(1/3),x]
 

Output:

(3*x*(a + b*x^2)^(1/3)*(a + b*x^2 - (a*Hypergeometric2F1[-1/3, 1/2, 3/2, - 
((b*x^2)/a)])/(1 + (b*x^2)/a)^(1/3)))/(11*b)
 

Rubi [A] (verified)

Time = 0.26 (sec) , antiderivative size = 293, normalized size of antiderivative = 1.01, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.267, Rules used = {248, 262, 234, 760}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int x^2 \sqrt [3]{a+b x^2} \, dx\)

\(\Big \downarrow \) 248

\(\displaystyle \frac {2}{11} a \int \frac {x^2}{\left (b x^2+a\right )^{2/3}}dx+\frac {3}{11} x^3 \sqrt [3]{a+b x^2}\)

\(\Big \downarrow \) 262

\(\displaystyle \frac {2}{11} a \left (\frac {3 x \sqrt [3]{a+b x^2}}{5 b}-\frac {3 a \int \frac {1}{\left (b x^2+a\right )^{2/3}}dx}{5 b}\right )+\frac {3}{11} x^3 \sqrt [3]{a+b x^2}\)

\(\Big \downarrow \) 234

\(\displaystyle \frac {2}{11} a \left (\frac {3 x \sqrt [3]{a+b x^2}}{5 b}-\frac {9 a \sqrt {b x^2} \int \frac {1}{\sqrt {b x^2}}d\sqrt [3]{b x^2+a}}{10 b^2 x}\right )+\frac {3}{11} x^3 \sqrt [3]{a+b x^2}\)

\(\Big \downarrow \) 760

\(\displaystyle \frac {2}{11} a \left (\frac {3\ 3^{3/4} \sqrt {2-\sqrt {3}} a \left (\sqrt [3]{a}-\sqrt [3]{a+b x^2}\right ) \sqrt {\frac {a^{2/3}+\sqrt [3]{a} \sqrt [3]{a+b x^2}+\left (a+b x^2\right )^{2/3}}{\left (\left (1-\sqrt {3}\right ) \sqrt [3]{a}-\sqrt [3]{a+b x^2}\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\left (1+\sqrt {3}\right ) \sqrt [3]{a}-\sqrt [3]{b x^2+a}}{\left (1-\sqrt {3}\right ) \sqrt [3]{a}-\sqrt [3]{b x^2+a}}\right ),-7+4 \sqrt {3}\right )}{5 b^2 x \sqrt {-\frac {\sqrt [3]{a} \left (\sqrt [3]{a}-\sqrt [3]{a+b x^2}\right )}{\left (\left (1-\sqrt {3}\right ) \sqrt [3]{a}-\sqrt [3]{a+b x^2}\right )^2}}}+\frac {3 x \sqrt [3]{a+b x^2}}{5 b}\right )+\frac {3}{11} x^3 \sqrt [3]{a+b x^2}\)

Input:

Int[x^2*(a + b*x^2)^(1/3),x]
 

Output:

(3*x^3*(a + b*x^2)^(1/3))/11 + (2*a*((3*x*(a + b*x^2)^(1/3))/(5*b) + (3*3^ 
(3/4)*Sqrt[2 - Sqrt[3]]*a*(a^(1/3) - (a + b*x^2)^(1/3))*Sqrt[(a^(2/3) + a^ 
(1/3)*(a + b*x^2)^(1/3) + (a + b*x^2)^(2/3))/((1 - Sqrt[3])*a^(1/3) - (a + 
 b*x^2)^(1/3))^2]*EllipticF[ArcSin[((1 + Sqrt[3])*a^(1/3) - (a + b*x^2)^(1 
/3))/((1 - Sqrt[3])*a^(1/3) - (a + b*x^2)^(1/3))], -7 + 4*Sqrt[3]])/(5*b^2 
*x*Sqrt[-((a^(1/3)*(a^(1/3) - (a + b*x^2)^(1/3)))/((1 - Sqrt[3])*a^(1/3) - 
 (a + b*x^2)^(1/3))^2)])))/11
 

Defintions of rubi rules used

rule 234
Int[((a_) + (b_.)*(x_)^2)^(-2/3), x_Symbol] :> Simp[3*(Sqrt[b*x^2]/(2*b*x)) 
   Subst[Int[1/Sqrt[-a + x^3], x], x, (a + b*x^2)^(1/3)], x] /; FreeQ[{a, b 
}, x]
 

rule 248
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(c*x)^ 
(m + 1)*((a + b*x^2)^p/(c*(m + 2*p + 1))), x] + Simp[2*a*(p/(m + 2*p + 1)) 
  Int[(c*x)^m*(a + b*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c, m}, x] && GtQ[ 
p, 0] && NeQ[m + 2*p + 1, 0] && IntBinomialQ[a, b, c, 2, m, p, x]
 

rule 262
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[c*(c*x) 
^(m - 1)*((a + b*x^2)^(p + 1)/(b*(m + 2*p + 1))), x] - Simp[a*c^2*((m - 1)/ 
(b*(m + 2*p + 1)))   Int[(c*x)^(m - 2)*(a + b*x^2)^p, x], x] /; FreeQ[{a, b 
, c, p}, x] && GtQ[m, 2 - 1] && NeQ[m + 2*p + 1, 0] && IntBinomialQ[a, b, c 
, 2, m, p, x]
 

rule 760
Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], 
s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt[2 - Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s 
*x + r^2*x^2)/((1 - Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[(- 
s)*((s + r*x)/((1 - Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 + Sqrt[3]) 
*s + r*x)/((1 - Sqrt[3])*s + r*x)], -7 + 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x 
] && NegQ[a]
 
Maple [F]

\[\int x^{2} \left (b \,x^{2}+a \right )^{\frac {1}{3}}d x\]

Input:

int(x^2*(b*x^2+a)^(1/3),x)
 

Output:

int(x^2*(b*x^2+a)^(1/3),x)
 

Fricas [F]

\[ \int x^2 \sqrt [3]{a+b x^2} \, dx=\int { {\left (b x^{2} + a\right )}^{\frac {1}{3}} x^{2} \,d x } \] Input:

integrate(x^2*(b*x^2+a)^(1/3),x, algorithm="fricas")
 

Output:

integral((b*x^2 + a)^(1/3)*x^2, x)
 

Sympy [A] (verification not implemented)

Time = 0.48 (sec) , antiderivative size = 29, normalized size of antiderivative = 0.10 \[ \int x^2 \sqrt [3]{a+b x^2} \, dx=\frac {\sqrt [3]{a} x^{3} {{}_{2}F_{1}\left (\begin {matrix} - \frac {1}{3}, \frac {3}{2} \\ \frac {5}{2} \end {matrix}\middle | {\frac {b x^{2} e^{i \pi }}{a}} \right )}}{3} \] Input:

integrate(x**2*(b*x**2+a)**(1/3),x)
 

Output:

a**(1/3)*x**3*hyper((-1/3, 3/2), (5/2,), b*x**2*exp_polar(I*pi)/a)/3
 

Maxima [F]

\[ \int x^2 \sqrt [3]{a+b x^2} \, dx=\int { {\left (b x^{2} + a\right )}^{\frac {1}{3}} x^{2} \,d x } \] Input:

integrate(x^2*(b*x^2+a)^(1/3),x, algorithm="maxima")
 

Output:

integrate((b*x^2 + a)^(1/3)*x^2, x)
 

Giac [F]

\[ \int x^2 \sqrt [3]{a+b x^2} \, dx=\int { {\left (b x^{2} + a\right )}^{\frac {1}{3}} x^{2} \,d x } \] Input:

integrate(x^2*(b*x^2+a)^(1/3),x, algorithm="giac")
 

Output:

integrate((b*x^2 + a)^(1/3)*x^2, x)
                                                                                    
                                                                                    
 

Mupad [F(-1)]

Timed out. \[ \int x^2 \sqrt [3]{a+b x^2} \, dx=\int x^2\,{\left (b\,x^2+a\right )}^{1/3} \,d x \] Input:

int(x^2*(a + b*x^2)^(1/3),x)
 

Output:

int(x^2*(a + b*x^2)^(1/3), x)
 

Reduce [F]

\[ \int x^2 \sqrt [3]{a+b x^2} \, dx=\frac {\frac {6 \left (b \,x^{2}+a \right )^{\frac {1}{3}} a x}{55}+\frac {3 \left (b \,x^{2}+a \right )^{\frac {1}{3}} b \,x^{3}}{11}-\frac {6 \left (\int \frac {1}{\left (b \,x^{2}+a \right )^{\frac {2}{3}}}d x \right ) a^{2}}{55}}{b} \] Input:

int(x^2*(b*x^2+a)^(1/3),x)
 

Output:

(3*(2*(a + b*x**2)**(1/3)*a*x + 5*(a + b*x**2)**(1/3)*b*x**3 - 2*int((a + 
b*x**2)**(1/3)/(a + b*x**2),x)*a**2))/(55*b)