\(\int \frac {1}{x^2 \sqrt [4]{-2+3 x^2}} \, dx\) [959]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (warning: unable to verify)
Fricas [F]
Sympy [C] (verification not implemented)
Maxima [F]
Giac [F]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 15, antiderivative size = 221 \[ \int \frac {1}{x^2 \sqrt [4]{-2+3 x^2}} \, dx=\frac {\left (-2+3 x^2\right )^{3/4}}{2 x}-\frac {3 x \sqrt [4]{-2+3 x^2}}{2 \left (\sqrt {2}+\sqrt {-2+3 x^2}\right )}+\frac {\sqrt {3} \sqrt {\frac {x^2}{\left (\sqrt {2}+\sqrt {-2+3 x^2}\right )^2}} \left (\sqrt {2}+\sqrt {-2+3 x^2}\right ) E\left (2 \arctan \left (\frac {\sqrt [4]{-2+3 x^2}}{\sqrt [4]{2}}\right )|\frac {1}{2}\right )}{2^{3/4} x}-\frac {\sqrt {3} \sqrt {\frac {x^2}{\left (\sqrt {2}+\sqrt {-2+3 x^2}\right )^2}} \left (\sqrt {2}+\sqrt {-2+3 x^2}\right ) \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{-2+3 x^2}}{\sqrt [4]{2}}\right ),\frac {1}{2}\right )}{2\ 2^{3/4} x} \] Output:

1/2*(3*x^2-2)^(3/4)/x-3*x*(3*x^2-2)^(1/4)/(2*2^(1/2)+2*(3*x^2-2)^(1/2))+1/ 
2*2^(1/4)*(x^2/(2^(1/2)+(3*x^2-2)^(1/2))^2)^(1/2)*(2^(1/2)+(3*x^2-2)^(1/2) 
)*EllipticE(sin(2*arctan(1/2*(3*x^2-2)^(1/4)*2^(3/4))),1/2*2^(1/2))*3^(1/2 
)/x-1/4*2^(1/4)*(x^2/(2^(1/2)+(3*x^2-2)^(1/2))^2)^(1/2)*(2^(1/2)+(3*x^2-2) 
^(1/2))*InverseJacobiAM(2*arctan(1/2*(3*x^2-2)^(1/4)*2^(3/4)),1/2*2^(1/2)) 
*3^(1/2)/x
                                                                                    
                                                                                    
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 4.73 (sec) , antiderivative size = 46, normalized size of antiderivative = 0.21 \[ \int \frac {1}{x^2 \sqrt [4]{-2+3 x^2}} \, dx=-\frac {\sqrt [4]{1-\frac {3 x^2}{2}} \operatorname {Hypergeometric2F1}\left (-\frac {1}{2},\frac {1}{4},\frac {1}{2},\frac {3 x^2}{2}\right )}{x \sqrt [4]{-2+3 x^2}} \] Input:

Integrate[1/(x^2*(-2 + 3*x^2)^(1/4)),x]
 

Output:

-(((1 - (3*x^2)/2)^(1/4)*Hypergeometric2F1[-1/2, 1/4, 1/2, (3*x^2)/2])/(x* 
(-2 + 3*x^2)^(1/4)))
 

Rubi [A] (verified)

Time = 0.28 (sec) , antiderivative size = 245, normalized size of antiderivative = 1.11, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.467, Rules used = {264, 228, 27, 834, 27, 761, 1510}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{x^2 \sqrt [4]{3 x^2-2}} \, dx\)

\(\Big \downarrow \) 264

\(\displaystyle \frac {\left (3 x^2-2\right )^{3/4}}{2 x}-\frac {3}{4} \int \frac {1}{\sqrt [4]{3 x^2-2}}dx\)

\(\Big \downarrow \) 228

\(\displaystyle \frac {\left (3 x^2-2\right )^{3/4}}{2 x}-\frac {\sqrt {\frac {3}{2}} \sqrt {x^2} \int \frac {\sqrt {\frac {2}{3}} \sqrt {3 x^2-2}}{\sqrt {x^2}}d\sqrt [4]{3 x^2-2}}{2 x}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\left (3 x^2-2\right )^{3/4}}{2 x}-\frac {\sqrt {3} \sqrt {x^2} \int \frac {\sqrt {3 x^2-2}}{\sqrt {3} \sqrt {x^2}}d\sqrt [4]{3 x^2-2}}{2 x}\)

\(\Big \downarrow \) 834

\(\displaystyle \frac {\left (3 x^2-2\right )^{3/4}}{2 x}-\frac {\sqrt {3} \sqrt {x^2} \left (\sqrt {2} \int \frac {1}{\sqrt {3} \sqrt {x^2}}d\sqrt [4]{3 x^2-2}-\sqrt {2} \int \frac {\sqrt {2}-\sqrt {3 x^2-2}}{\sqrt {6} \sqrt {x^2}}d\sqrt [4]{3 x^2-2}\right )}{2 x}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\left (3 x^2-2\right )^{3/4}}{2 x}-\frac {\sqrt {3} \sqrt {x^2} \left (\sqrt {2} \int \frac {1}{\sqrt {3} \sqrt {x^2}}d\sqrt [4]{3 x^2-2}-\int \frac {\sqrt {2}-\sqrt {3 x^2-2}}{\sqrt {3} \sqrt {x^2}}d\sqrt [4]{3 x^2-2}\right )}{2 x}\)

\(\Big \downarrow \) 761

\(\displaystyle \frac {\left (3 x^2-2\right )^{3/4}}{2 x}-\frac {\sqrt {3} \sqrt {x^2} \left (\frac {\sqrt {\frac {x^2}{\left (\sqrt {3 x^2-2}+\sqrt {2}\right )^2}} \left (\sqrt {3 x^2-2}+\sqrt {2}\right ) \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{3 x^2-2}}{\sqrt [4]{2}}\right ),\frac {1}{2}\right )}{2^{3/4} \sqrt {x^2}}-\int \frac {\sqrt {2}-\sqrt {3 x^2-2}}{\sqrt {3} \sqrt {x^2}}d\sqrt [4]{3 x^2-2}\right )}{2 x}\)

\(\Big \downarrow \) 1510

\(\displaystyle \frac {\left (3 x^2-2\right )^{3/4}}{2 x}-\frac {\sqrt {3} \sqrt {x^2} \left (\frac {\sqrt {\frac {x^2}{\left (\sqrt {3 x^2-2}+\sqrt {2}\right )^2}} \left (\sqrt {3 x^2-2}+\sqrt {2}\right ) \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{3 x^2-2}}{\sqrt [4]{2}}\right ),\frac {1}{2}\right )}{2^{3/4} \sqrt {x^2}}-\frac {\sqrt [4]{2} \sqrt {\frac {x^2}{\left (\sqrt {3 x^2-2}+\sqrt {2}\right )^2}} \left (\sqrt {3 x^2-2}+\sqrt {2}\right ) E\left (2 \arctan \left (\frac {\sqrt [4]{3 x^2-2}}{\sqrt [4]{2}}\right )|\frac {1}{2}\right )}{\sqrt {x^2}}+\frac {\sqrt {3} \sqrt {x^2} \sqrt [4]{3 x^2-2}}{\sqrt {3 x^2-2}+\sqrt {2}}\right )}{2 x}\)

Input:

Int[1/(x^2*(-2 + 3*x^2)^(1/4)),x]
 

Output:

(-2 + 3*x^2)^(3/4)/(2*x) - (Sqrt[3]*Sqrt[x^2]*((Sqrt[3]*Sqrt[x^2]*(-2 + 3* 
x^2)^(1/4))/(Sqrt[2] + Sqrt[-2 + 3*x^2]) - (2^(1/4)*Sqrt[x^2/(Sqrt[2] + Sq 
rt[-2 + 3*x^2])^2]*(Sqrt[2] + Sqrt[-2 + 3*x^2])*EllipticE[2*ArcTan[(-2 + 3 
*x^2)^(1/4)/2^(1/4)], 1/2])/Sqrt[x^2] + (Sqrt[x^2/(Sqrt[2] + Sqrt[-2 + 3*x 
^2])^2]*(Sqrt[2] + Sqrt[-2 + 3*x^2])*EllipticF[2*ArcTan[(-2 + 3*x^2)^(1/4) 
/2^(1/4)], 1/2])/(2^(3/4)*Sqrt[x^2])))/(2*x)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 228
Int[((a_) + (b_.)*(x_)^2)^(-1/4), x_Symbol] :> Simp[2*(Sqrt[(-b)*(x^2/a)]/( 
b*x))   Subst[Int[x^2/Sqrt[1 - x^4/a], x], x, (a + b*x^2)^(1/4)], x] /; Fre 
eQ[{a, b}, x] && NegQ[a]
 

rule 264
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(c*x)^( 
m + 1)*((a + b*x^2)^(p + 1)/(a*c*(m + 1))), x] - Simp[b*((m + 2*p + 3)/(a*c 
^2*(m + 1)))   Int[(c*x)^(m + 2)*(a + b*x^2)^p, x], x] /; FreeQ[{a, b, c, p 
}, x] && LtQ[m, -1] && IntBinomialQ[a, b, c, 2, m, p, x]
 

rule 761
Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[( 
1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))* 
EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]
 

rule 834
Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 2]}, S 
imp[1/q   Int[1/Sqrt[a + b*x^4], x], x] - Simp[1/q   Int[(1 - q*x^2)/Sqrt[a 
 + b*x^4], x], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]
 

rule 1510
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = 
 Rt[c/a, 4]}, Simp[(-d)*x*(Sqrt[a + c*x^4]/(a*(1 + q^2*x^2))), x] + Simp[d* 
(1 + q^2*x^2)*(Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]/(q*Sqrt[a + c*x^4]))*E 
llipticE[2*ArcTan[q*x], 1/2], x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e 
}, x] && PosQ[c/a]
 
Maple [A] (warning: unable to verify)

Time = 0.36 (sec) , antiderivative size = 42, normalized size of antiderivative = 0.19

method result size
meijerg \(-\frac {2^{\frac {3}{4}} {\left (-\operatorname {signum}\left (-1+\frac {3 x^{2}}{2}\right )\right )}^{\frac {1}{4}} \operatorname {hypergeom}\left (\left [-\frac {1}{2}, \frac {1}{4}\right ], \left [\frac {1}{2}\right ], \frac {3 x^{2}}{2}\right )}{2 \operatorname {signum}\left (-1+\frac {3 x^{2}}{2}\right )^{\frac {1}{4}} x}\) \(42\)
risch \(\frac {\left (3 x^{2}-2\right )^{\frac {3}{4}}}{2 x}-\frac {3 \,2^{\frac {3}{4}} {\left (-\operatorname {signum}\left (-1+\frac {3 x^{2}}{2}\right )\right )}^{\frac {1}{4}} x \operatorname {hypergeom}\left (\left [\frac {1}{4}, \frac {1}{2}\right ], \left [\frac {3}{2}\right ], \frac {3 x^{2}}{2}\right )}{8 \operatorname {signum}\left (-1+\frac {3 x^{2}}{2}\right )^{\frac {1}{4}}}\) \(55\)

Input:

int(1/x^2/(3*x^2-2)^(1/4),x,method=_RETURNVERBOSE)
 

Output:

-1/2*2^(3/4)/signum(-1+3/2*x^2)^(1/4)*(-signum(-1+3/2*x^2))^(1/4)/x*hyperg 
eom([-1/2,1/4],[1/2],3/2*x^2)
 

Fricas [F]

\[ \int \frac {1}{x^2 \sqrt [4]{-2+3 x^2}} \, dx=\int { \frac {1}{{\left (3 \, x^{2} - 2\right )}^{\frac {1}{4}} x^{2}} \,d x } \] Input:

integrate(1/x^2/(3*x^2-2)^(1/4),x, algorithm="fricas")
                                                                                    
                                                                                    
 

Output:

integral((3*x^2 - 2)^(3/4)/(3*x^4 - 2*x^2), x)
 

Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.45 (sec) , antiderivative size = 31, normalized size of antiderivative = 0.14 \[ \int \frac {1}{x^2 \sqrt [4]{-2+3 x^2}} \, dx=\frac {2^{\frac {3}{4}} e^{\frac {3 i \pi }{4}} {{}_{2}F_{1}\left (\begin {matrix} - \frac {1}{2}, \frac {1}{4} \\ \frac {1}{2} \end {matrix}\middle | {\frac {3 x^{2}}{2}} \right )}}{2 x} \] Input:

integrate(1/x**2/(3*x**2-2)**(1/4),x)
 

Output:

2**(3/4)*exp(3*I*pi/4)*hyper((-1/2, 1/4), (1/2,), 3*x**2/2)/(2*x)
 

Maxima [F]

\[ \int \frac {1}{x^2 \sqrt [4]{-2+3 x^2}} \, dx=\int { \frac {1}{{\left (3 \, x^{2} - 2\right )}^{\frac {1}{4}} x^{2}} \,d x } \] Input:

integrate(1/x^2/(3*x^2-2)^(1/4),x, algorithm="maxima")
 

Output:

integrate(1/((3*x^2 - 2)^(1/4)*x^2), x)
 

Giac [F]

\[ \int \frac {1}{x^2 \sqrt [4]{-2+3 x^2}} \, dx=\int { \frac {1}{{\left (3 \, x^{2} - 2\right )}^{\frac {1}{4}} x^{2}} \,d x } \] Input:

integrate(1/x^2/(3*x^2-2)^(1/4),x, algorithm="giac")
 

Output:

integrate(1/((3*x^2 - 2)^(1/4)*x^2), x)
 

Mupad [B] (verification not implemented)

Time = 0.34 (sec) , antiderivative size = 36, normalized size of antiderivative = 0.16 \[ \int \frac {1}{x^2 \sqrt [4]{-2+3 x^2}} \, dx=-\frac {2\,3^{3/4}\,{\left (3-\frac {2}{x^2}\right )}^{1/4}\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{4},\frac {3}{4};\ \frac {7}{4};\ \frac {2}{3\,x^2}\right )}{9\,x\,{\left (3\,x^2-2\right )}^{1/4}} \] Input:

int(1/(x^2*(3*x^2 - 2)^(1/4)),x)
 

Output:

-(2*3^(3/4)*(3 - 2/x^2)^(1/4)*hypergeom([1/4, 3/4], 7/4, 2/(3*x^2)))/(9*x* 
(3*x^2 - 2)^(1/4))
 

Reduce [F]

\[ \int \frac {1}{x^2 \sqrt [4]{-2+3 x^2}} \, dx=\int \frac {1}{\left (3 x^{2}-2\right )^{\frac {1}{4}} x^{2}}d x \] Input:

int(1/x^2/(3*x^2-2)^(1/4),x)
 

Output:

int(1/((3*x**2 - 2)**(1/4)*x**2),x)