\(\int \frac {(c+d x^2)^{3/2}}{(a+b x^2)^{3/2}} \, dx\) [144]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 206 \[ \int \frac {\left (c+d x^2\right )^{3/2}}{\left (a+b x^2\right )^{3/2}} \, dx=\frac {d x \sqrt {c+d x^2}}{b \sqrt {a+b x^2}}+\frac {(b c-2 a d) \sqrt {c+d x^2} E\left (\arctan \left (\frac {\sqrt {b} x}{\sqrt {a}}\right )|1-\frac {a d}{b c}\right )}{\sqrt {a} b^{3/2} \sqrt {a+b x^2} \sqrt {\frac {a \left (c+d x^2\right )}{c \left (a+b x^2\right )}}}+\frac {\sqrt {a} d \sqrt {c+d x^2} \operatorname {EllipticF}\left (\arctan \left (\frac {\sqrt {b} x}{\sqrt {a}}\right ),1-\frac {a d}{b c}\right )}{b^{3/2} \sqrt {a+b x^2} \sqrt {\frac {a \left (c+d x^2\right )}{c \left (a+b x^2\right )}}} \] Output:

d*x*(d*x^2+c)^(1/2)/b/(b*x^2+a)^(1/2)+(-2*a*d+b*c)*(d*x^2+c)^(1/2)*Ellipti 
cE(b^(1/2)*x/a^(1/2)/(1+b*x^2/a)^(1/2),(1-a*d/b/c)^(1/2))/a^(1/2)/b^(3/2)/ 
(b*x^2+a)^(1/2)/(a*(d*x^2+c)/c/(b*x^2+a))^(1/2)+a^(1/2)*d*(d*x^2+c)^(1/2)* 
InverseJacobiAM(arctan(b^(1/2)*x/a^(1/2)),(1-a*d/b/c)^(1/2))/b^(3/2)/(b*x^ 
2+a)^(1/2)/(a*(d*x^2+c)/c/(b*x^2+a))^(1/2)
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 3.58 (sec) , antiderivative size = 191, normalized size of antiderivative = 0.93 \[ \int \frac {\left (c+d x^2\right )^{3/2}}{\left (a+b x^2\right )^{3/2}} \, dx=\frac {-i c (-b c+2 a d) \sqrt {1+\frac {b x^2}{a}} \sqrt {1+\frac {d x^2}{c}} E\left (i \text {arcsinh}\left (\sqrt {\frac {b}{a}} x\right )|\frac {a d}{b c}\right )+(b c-a d) \left (\sqrt {\frac {b}{a}} x \left (c+d x^2\right )-i c \sqrt {1+\frac {b x^2}{a}} \sqrt {1+\frac {d x^2}{c}} \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {\frac {b}{a}} x\right ),\frac {a d}{b c}\right )\right )}{a^2 \left (\frac {b}{a}\right )^{3/2} \sqrt {a+b x^2} \sqrt {c+d x^2}} \] Input:

Integrate[(c + d*x^2)^(3/2)/(a + b*x^2)^(3/2),x]
 

Output:

((-I)*c*(-(b*c) + 2*a*d)*Sqrt[1 + (b*x^2)/a]*Sqrt[1 + (d*x^2)/c]*EllipticE 
[I*ArcSinh[Sqrt[b/a]*x], (a*d)/(b*c)] + (b*c - a*d)*(Sqrt[b/a]*x*(c + d*x^ 
2) - I*c*Sqrt[1 + (b*x^2)/a]*Sqrt[1 + (d*x^2)/c]*EllipticF[I*ArcSinh[Sqrt[ 
b/a]*x], (a*d)/(b*c)]))/(a^2*(b/a)^(3/2)*Sqrt[a + b*x^2]*Sqrt[c + d*x^2])
 

Rubi [A] (verified)

Time = 0.35 (sec) , antiderivative size = 258, normalized size of antiderivative = 1.25, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.261, Rules used = {315, 27, 406, 320, 388, 313}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (c+d x^2\right )^{3/2}}{\left (a+b x^2\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 315

\(\displaystyle \frac {\int \frac {d \left (a c-(b c-2 a d) x^2\right )}{\sqrt {b x^2+a} \sqrt {d x^2+c}}dx}{a b}+\frac {x \sqrt {c+d x^2} (b c-a d)}{a b \sqrt {a+b x^2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {d \int \frac {a c-(b c-2 a d) x^2}{\sqrt {b x^2+a} \sqrt {d x^2+c}}dx}{a b}+\frac {x \sqrt {c+d x^2} (b c-a d)}{a b \sqrt {a+b x^2}}\)

\(\Big \downarrow \) 406

\(\displaystyle \frac {d \left (a c \int \frac {1}{\sqrt {b x^2+a} \sqrt {d x^2+c}}dx-(b c-2 a d) \int \frac {x^2}{\sqrt {b x^2+a} \sqrt {d x^2+c}}dx\right )}{a b}+\frac {x \sqrt {c+d x^2} (b c-a d)}{a b \sqrt {a+b x^2}}\)

\(\Big \downarrow \) 320

\(\displaystyle \frac {d \left (\frac {c^{3/2} \sqrt {a+b x^2} \operatorname {EllipticF}\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right ),1-\frac {b c}{a d}\right )}{\sqrt {d} \sqrt {c+d x^2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}-(b c-2 a d) \int \frac {x^2}{\sqrt {b x^2+a} \sqrt {d x^2+c}}dx\right )}{a b}+\frac {x \sqrt {c+d x^2} (b c-a d)}{a b \sqrt {a+b x^2}}\)

\(\Big \downarrow \) 388

\(\displaystyle \frac {d \left (\frac {c^{3/2} \sqrt {a+b x^2} \operatorname {EllipticF}\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right ),1-\frac {b c}{a d}\right )}{\sqrt {d} \sqrt {c+d x^2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}-(b c-2 a d) \left (\frac {x \sqrt {a+b x^2}}{b \sqrt {c+d x^2}}-\frac {c \int \frac {\sqrt {b x^2+a}}{\left (d x^2+c\right )^{3/2}}dx}{b}\right )\right )}{a b}+\frac {x \sqrt {c+d x^2} (b c-a d)}{a b \sqrt {a+b x^2}}\)

\(\Big \downarrow \) 313

\(\displaystyle \frac {d \left (\frac {c^{3/2} \sqrt {a+b x^2} \operatorname {EllipticF}\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right ),1-\frac {b c}{a d}\right )}{\sqrt {d} \sqrt {c+d x^2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}-(b c-2 a d) \left (\frac {x \sqrt {a+b x^2}}{b \sqrt {c+d x^2}}-\frac {\sqrt {c} \sqrt {a+b x^2} E\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{b \sqrt {d} \sqrt {c+d x^2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}\right )\right )}{a b}+\frac {x \sqrt {c+d x^2} (b c-a d)}{a b \sqrt {a+b x^2}}\)

Input:

Int[(c + d*x^2)^(3/2)/(a + b*x^2)^(3/2),x]
 

Output:

((b*c - a*d)*x*Sqrt[c + d*x^2])/(a*b*Sqrt[a + b*x^2]) + (d*(-((b*c - 2*a*d 
)*((x*Sqrt[a + b*x^2])/(b*Sqrt[c + d*x^2]) - (Sqrt[c]*Sqrt[a + b*x^2]*Elli 
pticE[ArcTan[(Sqrt[d]*x)/Sqrt[c]], 1 - (b*c)/(a*d)])/(b*Sqrt[d]*Sqrt[(c*(a 
 + b*x^2))/(a*(c + d*x^2))]*Sqrt[c + d*x^2]))) + (c^(3/2)*Sqrt[a + b*x^2]* 
EllipticF[ArcTan[(Sqrt[d]*x)/Sqrt[c]], 1 - (b*c)/(a*d)])/(Sqrt[d]*Sqrt[(c* 
(a + b*x^2))/(a*(c + d*x^2))]*Sqrt[c + d*x^2])))/(a*b)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 313
Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Sim 
p[(Sqrt[a + b*x^2]/(c*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c 
+ d*x^2)))]))*EllipticE[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /; FreeQ 
[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]
 

rule 315
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_), x_Symbol] :> Sim 
p[(a*d - c*b)*x*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q - 1)/(2*a*b*(p + 1))), 
x] - Simp[1/(2*a*b*(p + 1))   Int[(a + b*x^2)^(p + 1)*(c + d*x^2)^(q - 2)*S 
imp[c*(a*d - c*b*(2*p + 3)) + d*(a*d*(2*(q - 1) + 1) - b*c*(2*(p + q) + 1)) 
*x^2, x], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && LtQ[p, - 
1] && GtQ[q, 1] && IntBinomialQ[a, b, c, d, 2, p, q, x]
 

rule 320
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> S 
imp[(Sqrt[a + b*x^2]/(a*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*( 
c + d*x^2)))]))*EllipticF[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /; Fre 
eQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]
 

rule 388
Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] 
 :> Simp[x*(Sqrt[a + b*x^2]/(b*Sqrt[c + d*x^2])), x] - Simp[c/b   Int[Sqrt[ 
a + b*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - 
 a*d, 0] && PosQ[b/a] && PosQ[d/c] &&  !SimplerSqrtQ[b/a, d/c]
 

rule 406
Int[((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_.)*((e_) + (f_.)*( 
x_)^2), x_Symbol] :> Simp[e   Int[(a + b*x^2)^p*(c + d*x^2)^q, x], x] + Sim 
p[f   Int[x^2*(a + b*x^2)^p*(c + d*x^2)^q, x], x] /; FreeQ[{a, b, c, d, e, 
f, p, q}, x]
 
Maple [A] (verified)

Time = 4.76 (sec) , antiderivative size = 332, normalized size of antiderivative = 1.61

method result size
default \(\frac {\left (-\sqrt {-\frac {b}{a}}\, a \,d^{2} x^{3}+\sqrt {-\frac {b}{a}}\, b c d \,x^{3}-a c \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {x^{2} d +c}{c}}\, \operatorname {EllipticF}\left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) d +\sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {x^{2} d +c}{c}}\, \operatorname {EllipticF}\left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) b \,c^{2}+2 \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {x^{2} d +c}{c}}\, \operatorname {EllipticE}\left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) a c d -\sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {x^{2} d +c}{c}}\, \operatorname {EllipticE}\left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) b \,c^{2}-\sqrt {-\frac {b}{a}}\, a c d x +\sqrt {-\frac {b}{a}}\, b \,c^{2} x \right ) \sqrt {x^{2} d +c}\, \sqrt {b \,x^{2}+a}}{b \left (b d \,x^{4}+a d \,x^{2}+x^{2} b c +a c \right ) a \sqrt {-\frac {b}{a}}}\) \(332\)
elliptic \(\frac {\sqrt {\left (b \,x^{2}+a \right ) \left (x^{2} d +c \right )}\, \left (-\frac {\left (b d \,x^{2}+b c \right ) \left (a d -b c \right ) x}{a \,b^{2} \sqrt {\left (x^{2}+\frac {a}{b}\right ) \left (b d \,x^{2}+b c \right )}}+\frac {\left (-\frac {d \left (a d -2 b c \right )}{b^{2}}+\frac {\left (a d -b c \right )^{2}}{b^{2} a}+\frac {c \left (a d -b c \right )}{b a}\right ) \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \operatorname {EllipticF}\left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )}{\sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+x^{2} b c +a c}}-\frac {\left (\frac {d^{2}}{b}+\frac {d \left (a d -b c \right )}{b a}\right ) c \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \left (\operatorname {EllipticF}\left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )-\operatorname {EllipticE}\left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )\right )}{\sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+x^{2} b c +a c}\, d}\right )}{\sqrt {b \,x^{2}+a}\, \sqrt {x^{2} d +c}}\) \(368\)

Input:

int((d*x^2+c)^(3/2)/(b*x^2+a)^(3/2),x,method=_RETURNVERBOSE)
 

Output:

(-(-b/a)^(1/2)*a*d^2*x^3+(-b/a)^(1/2)*b*c*d*x^3-a*c*((b*x^2+a)/a)^(1/2)*(( 
d*x^2+c)/c)^(1/2)*EllipticF(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*d+((b*x^2+a)/a 
)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticF(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*b*c^ 
2+2*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticE(x*(-b/a)^(1/2),(a*d/ 
b/c)^(1/2))*a*c*d-((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticE(x*(-b/ 
a)^(1/2),(a*d/b/c)^(1/2))*b*c^2-(-b/a)^(1/2)*a*c*d*x+(-b/a)^(1/2)*b*c^2*x) 
*(d*x^2+c)^(1/2)*(b*x^2+a)^(1/2)/b/(b*d*x^4+a*d*x^2+b*c*x^2+a*c)/a/(-b/a)^ 
(1/2)
 

Fricas [A] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 226, normalized size of antiderivative = 1.10 \[ \int \frac {\left (c+d x^2\right )^{3/2}}{\left (a+b x^2\right )^{3/2}} \, dx=\frac {{\left ({\left (b^{2} c^{2} - 2 \, a b c d\right )} x^{3} + {\left (a b c^{2} - 2 \, a^{2} c d\right )} x\right )} \sqrt {b d} \sqrt {-\frac {c}{d}} E(\arcsin \left (\frac {\sqrt {-\frac {c}{d}}}{x}\right )\,|\,\frac {a d}{b c}) - {\left ({\left (b^{2} c^{2} - 2 \, a b c d - a b d^{2}\right )} x^{3} + {\left (a b c^{2} - 2 \, a^{2} c d - a^{2} d^{2}\right )} x\right )} \sqrt {b d} \sqrt {-\frac {c}{d}} F(\arcsin \left (\frac {\sqrt {-\frac {c}{d}}}{x}\right )\,|\,\frac {a d}{b c}) + {\left (a b d^{2} x^{2} - a b c d + 2 \, a^{2} d^{2}\right )} \sqrt {b x^{2} + a} \sqrt {d x^{2} + c}}{a b^{3} d x^{3} + a^{2} b^{2} d x} \] Input:

integrate((d*x^2+c)^(3/2)/(b*x^2+a)^(3/2),x, algorithm="fricas")
 

Output:

(((b^2*c^2 - 2*a*b*c*d)*x^3 + (a*b*c^2 - 2*a^2*c*d)*x)*sqrt(b*d)*sqrt(-c/d 
)*elliptic_e(arcsin(sqrt(-c/d)/x), a*d/(b*c)) - ((b^2*c^2 - 2*a*b*c*d - a* 
b*d^2)*x^3 + (a*b*c^2 - 2*a^2*c*d - a^2*d^2)*x)*sqrt(b*d)*sqrt(-c/d)*ellip 
tic_f(arcsin(sqrt(-c/d)/x), a*d/(b*c)) + (a*b*d^2*x^2 - a*b*c*d + 2*a^2*d^ 
2)*sqrt(b*x^2 + a)*sqrt(d*x^2 + c))/(a*b^3*d*x^3 + a^2*b^2*d*x)
 

Sympy [F]

\[ \int \frac {\left (c+d x^2\right )^{3/2}}{\left (a+b x^2\right )^{3/2}} \, dx=\int \frac {\left (c + d x^{2}\right )^{\frac {3}{2}}}{\left (a + b x^{2}\right )^{\frac {3}{2}}}\, dx \] Input:

integrate((d*x**2+c)**(3/2)/(b*x**2+a)**(3/2),x)
 

Output:

Integral((c + d*x**2)**(3/2)/(a + b*x**2)**(3/2), x)
 

Maxima [F]

\[ \int \frac {\left (c+d x^2\right )^{3/2}}{\left (a+b x^2\right )^{3/2}} \, dx=\int { \frac {{\left (d x^{2} + c\right )}^{\frac {3}{2}}}{{\left (b x^{2} + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate((d*x^2+c)^(3/2)/(b*x^2+a)^(3/2),x, algorithm="maxima")
 

Output:

integrate((d*x^2 + c)^(3/2)/(b*x^2 + a)^(3/2), x)
 

Giac [F]

\[ \int \frac {\left (c+d x^2\right )^{3/2}}{\left (a+b x^2\right )^{3/2}} \, dx=\int { \frac {{\left (d x^{2} + c\right )}^{\frac {3}{2}}}{{\left (b x^{2} + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate((d*x^2+c)^(3/2)/(b*x^2+a)^(3/2),x, algorithm="giac")
 

Output:

integrate((d*x^2 + c)^(3/2)/(b*x^2 + a)^(3/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (c+d x^2\right )^{3/2}}{\left (a+b x^2\right )^{3/2}} \, dx=\int \frac {{\left (d\,x^2+c\right )}^{3/2}}{{\left (b\,x^2+a\right )}^{3/2}} \,d x \] Input:

int((c + d*x^2)^(3/2)/(a + b*x^2)^(3/2),x)
 

Output:

int((c + d*x^2)^(3/2)/(a + b*x^2)^(3/2), x)
 

Reduce [F]

\[ \int \frac {\left (c+d x^2\right )^{3/2}}{\left (a+b x^2\right )^{3/2}} \, dx=\frac {\sqrt {d \,x^{2}+c}\, \sqrt {b \,x^{2}+a}\, c x +\left (\int \frac {\sqrt {d \,x^{2}+c}\, \sqrt {b \,x^{2}+a}\, x^{4}}{b^{2} d \,x^{6}+2 a b d \,x^{4}+b^{2} c \,x^{4}+a^{2} d \,x^{2}+2 a b c \,x^{2}+a^{2} c}d x \right ) a^{2} d^{2}-\left (\int \frac {\sqrt {d \,x^{2}+c}\, \sqrt {b \,x^{2}+a}\, x^{4}}{b^{2} d \,x^{6}+2 a b d \,x^{4}+b^{2} c \,x^{4}+a^{2} d \,x^{2}+2 a b c \,x^{2}+a^{2} c}d x \right ) a b c d +\left (\int \frac {\sqrt {d \,x^{2}+c}\, \sqrt {b \,x^{2}+a}\, x^{4}}{b^{2} d \,x^{6}+2 a b d \,x^{4}+b^{2} c \,x^{4}+a^{2} d \,x^{2}+2 a b c \,x^{2}+a^{2} c}d x \right ) a b \,d^{2} x^{2}-\left (\int \frac {\sqrt {d \,x^{2}+c}\, \sqrt {b \,x^{2}+a}\, x^{4}}{b^{2} d \,x^{6}+2 a b d \,x^{4}+b^{2} c \,x^{4}+a^{2} d \,x^{2}+2 a b c \,x^{2}+a^{2} c}d x \right ) b^{2} c d \,x^{2}}{a \left (b \,x^{2}+a \right )} \] Input:

int((d*x^2+c)^(3/2)/(b*x^2+a)^(3/2),x)
 

Output:

(sqrt(c + d*x**2)*sqrt(a + b*x**2)*c*x + int((sqrt(c + d*x**2)*sqrt(a + b* 
x**2)*x**4)/(a**2*c + a**2*d*x**2 + 2*a*b*c*x**2 + 2*a*b*d*x**4 + b**2*c*x 
**4 + b**2*d*x**6),x)*a**2*d**2 - int((sqrt(c + d*x**2)*sqrt(a + b*x**2)*x 
**4)/(a**2*c + a**2*d*x**2 + 2*a*b*c*x**2 + 2*a*b*d*x**4 + b**2*c*x**4 + b 
**2*d*x**6),x)*a*b*c*d + int((sqrt(c + d*x**2)*sqrt(a + b*x**2)*x**4)/(a** 
2*c + a**2*d*x**2 + 2*a*b*c*x**2 + 2*a*b*d*x**4 + b**2*c*x**4 + b**2*d*x** 
6),x)*a*b*d**2*x**2 - int((sqrt(c + d*x**2)*sqrt(a + b*x**2)*x**4)/(a**2*c 
 + a**2*d*x**2 + 2*a*b*c*x**2 + 2*a*b*d*x**4 + b**2*c*x**4 + b**2*d*x**6), 
x)*b**2*c*d*x**2)/(a*(a + b*x**2))