\(\int \frac {\sqrt {c+d x^2}}{\sqrt {a+b x^2}} \, dx\) [195]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 194 \[ \int \frac {\sqrt {c+d x^2}}{\sqrt {a+b x^2}} \, dx=\frac {x \sqrt {c+d x^2}}{\sqrt {a+b x^2}}-\frac {\sqrt {a} \sqrt {c+d x^2} E\left (\arctan \left (\frac {\sqrt {b} x}{\sqrt {a}}\right )|1-\frac {a d}{b c}\right )}{\sqrt {b} \sqrt {a+b x^2} \sqrt {\frac {a \left (c+d x^2\right )}{c \left (a+b x^2\right )}}}+\frac {\sqrt {a} \sqrt {c+d x^2} \operatorname {EllipticF}\left (\arctan \left (\frac {\sqrt {b} x}{\sqrt {a}}\right ),1-\frac {a d}{b c}\right )}{\sqrt {b} \sqrt {a+b x^2} \sqrt {\frac {a \left (c+d x^2\right )}{c \left (a+b x^2\right )}}} \] Output:

x*(d*x^2+c)^(1/2)/(b*x^2+a)^(1/2)-a^(1/2)*(d*x^2+c)^(1/2)*EllipticE(b^(1/2 
)*x/a^(1/2)/(1+b*x^2/a)^(1/2),(1-a*d/b/c)^(1/2))/b^(1/2)/(b*x^2+a)^(1/2)/( 
a*(d*x^2+c)/c/(b*x^2+a))^(1/2)+a^(1/2)*(d*x^2+c)^(1/2)*InverseJacobiAM(arc 
tan(b^(1/2)*x/a^(1/2)),(1-a*d/b/c)^(1/2))/b^(1/2)/(b*x^2+a)^(1/2)/(a*(d*x^ 
2+c)/c/(b*x^2+a))^(1/2)
 

Mathematica [A] (verified)

Time = 0.02 (sec) , antiderivative size = 86, normalized size of antiderivative = 0.44 \[ \int \frac {\sqrt {c+d x^2}}{\sqrt {a+b x^2}} \, dx=\frac {\sqrt {\frac {a+b x^2}{a}} \sqrt {c+d x^2} E\left (\arcsin \left (\sqrt {-\frac {b}{a}} x\right )|\frac {a d}{b c}\right )}{\sqrt {-\frac {b}{a}} \sqrt {a+b x^2} \sqrt {\frac {c+d x^2}{c}}} \] Input:

Integrate[Sqrt[c + d*x^2]/Sqrt[a + b*x^2],x]
 

Output:

(Sqrt[(a + b*x^2)/a]*Sqrt[c + d*x^2]*EllipticE[ArcSin[Sqrt[-(b/a)]*x], (a* 
d)/(b*c)])/(Sqrt[-(b/a)]*Sqrt[a + b*x^2]*Sqrt[(c + d*x^2)/c])
 

Rubi [A] (verified)

Time = 0.27 (sec) , antiderivative size = 206, normalized size of antiderivative = 1.06, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.174, Rules used = {324, 320, 388, 313}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {c+d x^2}}{\sqrt {a+b x^2}} \, dx\)

\(\Big \downarrow \) 324

\(\displaystyle c \int \frac {1}{\sqrt {b x^2+a} \sqrt {d x^2+c}}dx+d \int \frac {x^2}{\sqrt {b x^2+a} \sqrt {d x^2+c}}dx\)

\(\Big \downarrow \) 320

\(\displaystyle d \int \frac {x^2}{\sqrt {b x^2+a} \sqrt {d x^2+c}}dx+\frac {c^{3/2} \sqrt {a+b x^2} \operatorname {EllipticF}\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right ),1-\frac {b c}{a d}\right )}{a \sqrt {d} \sqrt {c+d x^2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}\)

\(\Big \downarrow \) 388

\(\displaystyle d \left (\frac {x \sqrt {a+b x^2}}{b \sqrt {c+d x^2}}-\frac {c \int \frac {\sqrt {b x^2+a}}{\left (d x^2+c\right )^{3/2}}dx}{b}\right )+\frac {c^{3/2} \sqrt {a+b x^2} \operatorname {EllipticF}\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right ),1-\frac {b c}{a d}\right )}{a \sqrt {d} \sqrt {c+d x^2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}\)

\(\Big \downarrow \) 313

\(\displaystyle \frac {c^{3/2} \sqrt {a+b x^2} \operatorname {EllipticF}\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right ),1-\frac {b c}{a d}\right )}{a \sqrt {d} \sqrt {c+d x^2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}+d \left (\frac {x \sqrt {a+b x^2}}{b \sqrt {c+d x^2}}-\frac {\sqrt {c} \sqrt {a+b x^2} E\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{b \sqrt {d} \sqrt {c+d x^2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}\right )\)

Input:

Int[Sqrt[c + d*x^2]/Sqrt[a + b*x^2],x]
 

Output:

d*((x*Sqrt[a + b*x^2])/(b*Sqrt[c + d*x^2]) - (Sqrt[c]*Sqrt[a + b*x^2]*Elli 
pticE[ArcTan[(Sqrt[d]*x)/Sqrt[c]], 1 - (b*c)/(a*d)])/(b*Sqrt[d]*Sqrt[(c*(a 
 + b*x^2))/(a*(c + d*x^2))]*Sqrt[c + d*x^2])) + (c^(3/2)*Sqrt[a + b*x^2]*E 
llipticF[ArcTan[(Sqrt[d]*x)/Sqrt[c]], 1 - (b*c)/(a*d)])/(a*Sqrt[d]*Sqrt[(c 
*(a + b*x^2))/(a*(c + d*x^2))]*Sqrt[c + d*x^2])
 

Defintions of rubi rules used

rule 313
Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Sim 
p[(Sqrt[a + b*x^2]/(c*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c 
+ d*x^2)))]))*EllipticE[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /; FreeQ 
[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]
 

rule 320
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> S 
imp[(Sqrt[a + b*x^2]/(a*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*( 
c + d*x^2)))]))*EllipticF[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /; Fre 
eQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]
 

rule 324
Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[ 
a   Int[1/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]), x], x] + Simp[b   Int[x^2/(Sqr 
t[a + b*x^2]*Sqrt[c + d*x^2]), x], x] /; FreeQ[{a, b, c, d}, x] && PosQ[d/c 
] && PosQ[b/a]
 

rule 388
Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] 
 :> Simp[x*(Sqrt[a + b*x^2]/(b*Sqrt[c + d*x^2])), x] - Simp[c/b   Int[Sqrt[ 
a + b*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - 
 a*d, 0] && PosQ[b/a] && PosQ[d/c] &&  !SimplerSqrtQ[b/a, d/c]
 
Maple [A] (verified)

Time = 0.94 (sec) , antiderivative size = 101, normalized size of antiderivative = 0.52

method result size
default \(\frac {\sqrt {x^{2} d +c}\, \sqrt {b \,x^{2}+a}\, c \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {x^{2} d +c}{c}}\, \operatorname {EllipticE}\left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right )}{\left (b d \,x^{4}+a d \,x^{2}+x^{2} b c +a c \right ) \sqrt {-\frac {b}{a}}}\) \(101\)
elliptic \(\frac {\sqrt {\left (b \,x^{2}+a \right ) \left (x^{2} d +c \right )}\, \left (\frac {c \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \operatorname {EllipticF}\left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )}{\sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+x^{2} b c +a c}}-\frac {c \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \left (\operatorname {EllipticF}\left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )-\operatorname {EllipticE}\left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )\right )}{\sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+x^{2} b c +a c}}\right )}{\sqrt {b \,x^{2}+a}\, \sqrt {x^{2} d +c}}\) \(245\)

Input:

int((d*x^2+c)^(1/2)/(b*x^2+a)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

(d*x^2+c)^(1/2)*(b*x^2+a)^(1/2)*c*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)* 
EllipticE(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))/(b*d*x^4+a*d*x^2+b*c*x^2+a*c)/(- 
b/a)^(1/2)
 

Fricas [A] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 114, normalized size of antiderivative = 0.59 \[ \int \frac {\sqrt {c+d x^2}}{\sqrt {a+b x^2}} \, dx=-\frac {\sqrt {b d} c x \sqrt {-\frac {c}{d}} E(\arcsin \left (\frac {\sqrt {-\frac {c}{d}}}{x}\right )\,|\,\frac {a d}{b c}) - \sqrt {b d} {\left (c + d\right )} x \sqrt {-\frac {c}{d}} F(\arcsin \left (\frac {\sqrt {-\frac {c}{d}}}{x}\right )\,|\,\frac {a d}{b c}) - \sqrt {b x^{2} + a} \sqrt {d x^{2} + c} d}{b d x} \] Input:

integrate((d*x^2+c)^(1/2)/(b*x^2+a)^(1/2),x, algorithm="fricas")
 

Output:

-(sqrt(b*d)*c*x*sqrt(-c/d)*elliptic_e(arcsin(sqrt(-c/d)/x), a*d/(b*c)) - s 
qrt(b*d)*(c + d)*x*sqrt(-c/d)*elliptic_f(arcsin(sqrt(-c/d)/x), a*d/(b*c)) 
- sqrt(b*x^2 + a)*sqrt(d*x^2 + c)*d)/(b*d*x)
 

Sympy [F]

\[ \int \frac {\sqrt {c+d x^2}}{\sqrt {a+b x^2}} \, dx=\int \frac {\sqrt {c + d x^{2}}}{\sqrt {a + b x^{2}}}\, dx \] Input:

integrate((d*x**2+c)**(1/2)/(b*x**2+a)**(1/2),x)
 

Output:

Integral(sqrt(c + d*x**2)/sqrt(a + b*x**2), x)
 

Maxima [F]

\[ \int \frac {\sqrt {c+d x^2}}{\sqrt {a+b x^2}} \, dx=\int { \frac {\sqrt {d x^{2} + c}}{\sqrt {b x^{2} + a}} \,d x } \] Input:

integrate((d*x^2+c)^(1/2)/(b*x^2+a)^(1/2),x, algorithm="maxima")
 

Output:

integrate(sqrt(d*x^2 + c)/sqrt(b*x^2 + a), x)
 

Giac [F]

\[ \int \frac {\sqrt {c+d x^2}}{\sqrt {a+b x^2}} \, dx=\int { \frac {\sqrt {d x^{2} + c}}{\sqrt {b x^{2} + a}} \,d x } \] Input:

integrate((d*x^2+c)^(1/2)/(b*x^2+a)^(1/2),x, algorithm="giac")
 

Output:

integrate(sqrt(d*x^2 + c)/sqrt(b*x^2 + a), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {c+d x^2}}{\sqrt {a+b x^2}} \, dx=\int \frac {\sqrt {d\,x^2+c}}{\sqrt {b\,x^2+a}} \,d x \] Input:

int((c + d*x^2)^(1/2)/(a + b*x^2)^(1/2),x)
 

Output:

int((c + d*x^2)^(1/2)/(a + b*x^2)^(1/2), x)
 

Reduce [F]

\[ \int \frac {\sqrt {c+d x^2}}{\sqrt {a+b x^2}} \, dx=\int \frac {\sqrt {d \,x^{2}+c}\, \sqrt {b \,x^{2}+a}}{b \,x^{2}+a}d x \] Input:

int((d*x^2+c)^(1/2)/(b*x^2+a)^(1/2),x)
                                                                                    
                                                                                    
 

Output:

int((sqrt(c + d*x**2)*sqrt(a + b*x**2))/(a + b*x**2),x)