\(\int \frac {\sqrt {-c+d x^2}}{\sqrt {a+b x^2}} \, dx\) [200]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 192 \[ \int \frac {\sqrt {-c+d x^2}}{\sqrt {a+b x^2}} \, dx=-\frac {a \sqrt {d} \sqrt {1+\frac {b x^2}{a}} \sqrt {-c+d x^2} E\left (\arcsin \left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|-\frac {b c}{a d}\right )}{b \sqrt {c} \sqrt {a+b x^2} \sqrt {1-\frac {d x^2}{c}}}+\frac {(b c+a d) \sqrt {1+\frac {b x^2}{a}} \sqrt {-c+d x^2} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {d} x}{\sqrt {c}}\right ),-\frac {b c}{a d}\right )}{b \sqrt {c} \sqrt {d} \sqrt {a+b x^2} \sqrt {1-\frac {d x^2}{c}}} \] Output:

-a*d^(1/2)*(1+b*x^2/a)^(1/2)*(d*x^2-c)^(1/2)*EllipticE(d^(1/2)*x/c^(1/2),( 
-b*c/a/d)^(1/2))/b/c^(1/2)/(b*x^2+a)^(1/2)/(1-d*x^2/c)^(1/2)+(a*d+b*c)*(1+ 
b*x^2/a)^(1/2)*(d*x^2-c)^(1/2)*EllipticF(d^(1/2)*x/c^(1/2),(-b*c/a/d)^(1/2 
))/b/c^(1/2)/d^(1/2)/(b*x^2+a)^(1/2)/(1-d*x^2/c)^(1/2)
 

Mathematica [A] (verified)

Time = 0.72 (sec) , antiderivative size = 90, normalized size of antiderivative = 0.47 \[ \int \frac {\sqrt {-c+d x^2}}{\sqrt {a+b x^2}} \, dx=\frac {\sqrt {\frac {a+b x^2}{a}} \sqrt {-c+d x^2} E\left (\arcsin \left (\sqrt {-\frac {b}{a}} x\right )|-\frac {a d}{b c}\right )}{\sqrt {-\frac {b}{a}} \sqrt {a+b x^2} \sqrt {\frac {c-d x^2}{c}}} \] Input:

Integrate[Sqrt[-c + d*x^2]/Sqrt[a + b*x^2],x]
 

Output:

(Sqrt[(a + b*x^2)/a]*Sqrt[-c + d*x^2]*EllipticE[ArcSin[Sqrt[-(b/a)]*x], -( 
(a*d)/(b*c))])/(Sqrt[-(b/a)]*Sqrt[a + b*x^2]*Sqrt[(c - d*x^2)/c])
 

Rubi [A] (verified)

Time = 0.33 (sec) , antiderivative size = 191, normalized size of antiderivative = 0.99, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.280, Rules used = {326, 323, 323, 321, 331, 330, 327}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {d x^2-c}}{\sqrt {a+b x^2}} \, dx\)

\(\Big \downarrow \) 326

\(\displaystyle \frac {d \int \frac {\sqrt {b x^2+a}}{\sqrt {d x^2-c}}dx}{b}-\frac {(a d+b c) \int \frac {1}{\sqrt {b x^2+a} \sqrt {d x^2-c}}dx}{b}\)

\(\Big \downarrow \) 323

\(\displaystyle \frac {d \int \frac {\sqrt {b x^2+a}}{\sqrt {d x^2-c}}dx}{b}-\frac {\sqrt {1-\frac {d x^2}{c}} (a d+b c) \int \frac {1}{\sqrt {b x^2+a} \sqrt {1-\frac {d x^2}{c}}}dx}{b \sqrt {d x^2-c}}\)

\(\Big \downarrow \) 323

\(\displaystyle \frac {d \int \frac {\sqrt {b x^2+a}}{\sqrt {d x^2-c}}dx}{b}-\frac {\sqrt {\frac {b x^2}{a}+1} \sqrt {1-\frac {d x^2}{c}} (a d+b c) \int \frac {1}{\sqrt {\frac {b x^2}{a}+1} \sqrt {1-\frac {d x^2}{c}}}dx}{b \sqrt {a+b x^2} \sqrt {d x^2-c}}\)

\(\Big \downarrow \) 321

\(\displaystyle \frac {d \int \frac {\sqrt {b x^2+a}}{\sqrt {d x^2-c}}dx}{b}-\frac {\sqrt {c} \sqrt {\frac {b x^2}{a}+1} \sqrt {1-\frac {d x^2}{c}} (a d+b c) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {d} x}{\sqrt {c}}\right ),-\frac {b c}{a d}\right )}{b \sqrt {d} \sqrt {a+b x^2} \sqrt {d x^2-c}}\)

\(\Big \downarrow \) 331

\(\displaystyle \frac {d \sqrt {1-\frac {d x^2}{c}} \int \frac {\sqrt {b x^2+a}}{\sqrt {1-\frac {d x^2}{c}}}dx}{b \sqrt {d x^2-c}}-\frac {\sqrt {c} \sqrt {\frac {b x^2}{a}+1} \sqrt {1-\frac {d x^2}{c}} (a d+b c) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {d} x}{\sqrt {c}}\right ),-\frac {b c}{a d}\right )}{b \sqrt {d} \sqrt {a+b x^2} \sqrt {d x^2-c}}\)

\(\Big \downarrow \) 330

\(\displaystyle \frac {d \sqrt {a+b x^2} \sqrt {1-\frac {d x^2}{c}} \int \frac {\sqrt {\frac {b x^2}{a}+1}}{\sqrt {1-\frac {d x^2}{c}}}dx}{b \sqrt {\frac {b x^2}{a}+1} \sqrt {d x^2-c}}-\frac {\sqrt {c} \sqrt {\frac {b x^2}{a}+1} \sqrt {1-\frac {d x^2}{c}} (a d+b c) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {d} x}{\sqrt {c}}\right ),-\frac {b c}{a d}\right )}{b \sqrt {d} \sqrt {a+b x^2} \sqrt {d x^2-c}}\)

\(\Big \downarrow \) 327

\(\displaystyle \frac {\sqrt {c} \sqrt {d} \sqrt {a+b x^2} \sqrt {1-\frac {d x^2}{c}} E\left (\arcsin \left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|-\frac {b c}{a d}\right )}{b \sqrt {\frac {b x^2}{a}+1} \sqrt {d x^2-c}}-\frac {\sqrt {c} \sqrt {\frac {b x^2}{a}+1} \sqrt {1-\frac {d x^2}{c}} (a d+b c) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {d} x}{\sqrt {c}}\right ),-\frac {b c}{a d}\right )}{b \sqrt {d} \sqrt {a+b x^2} \sqrt {d x^2-c}}\)

Input:

Int[Sqrt[-c + d*x^2]/Sqrt[a + b*x^2],x]
 

Output:

(Sqrt[c]*Sqrt[d]*Sqrt[a + b*x^2]*Sqrt[1 - (d*x^2)/c]*EllipticE[ArcSin[(Sqr 
t[d]*x)/Sqrt[c]], -((b*c)/(a*d))])/(b*Sqrt[1 + (b*x^2)/a]*Sqrt[-c + d*x^2] 
) - (Sqrt[c]*(b*c + a*d)*Sqrt[1 + (b*x^2)/a]*Sqrt[1 - (d*x^2)/c]*EllipticF 
[ArcSin[(Sqrt[d]*x)/Sqrt[c]], -((b*c)/(a*d))])/(b*Sqrt[d]*Sqrt[a + b*x^2]* 
Sqrt[-c + d*x^2])
 

Defintions of rubi rules used

rule 321
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> S 
imp[(1/(Sqrt[a]*Sqrt[c]*Rt[-d/c, 2]))*EllipticF[ArcSin[Rt[-d/c, 2]*x], b*(c 
/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 
0] &&  !(NegQ[b/a] && SimplerSqrtQ[-b/a, -d/c])
 

rule 323
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> S 
imp[Sqrt[1 + (d/c)*x^2]/Sqrt[c + d*x^2]   Int[1/(Sqrt[a + b*x^2]*Sqrt[1 + ( 
d/c)*x^2]), x], x] /; FreeQ[{a, b, c, d}, x] &&  !GtQ[c, 0]
 

rule 326
Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[ 
b/d   Int[Sqrt[c + d*x^2]/Sqrt[a + b*x^2], x], x] - Simp[(b*c - a*d)/d   In 
t[1/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]), x], x] /; FreeQ[{a, b, c, d}, x] && 
PosQ[d/c] && NegQ[b/a]
 

rule 327
Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[ 
(Sqrt[a]/(Sqrt[c]*Rt[-d/c, 2]))*EllipticE[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d) 
)], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 0]
 

rule 330
Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[ 
Sqrt[a + b*x^2]/Sqrt[1 + (b/a)*x^2]   Int[Sqrt[1 + (b/a)*x^2]/Sqrt[c + d*x^ 
2], x], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &&  !GtQ[a, 
0]
 

rule 331
Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[ 
Sqrt[1 + (d/c)*x^2]/Sqrt[c + d*x^2]   Int[Sqrt[a + b*x^2]/Sqrt[1 + (d/c)*x^ 
2], x], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] &&  !GtQ[c, 0]
 
Maple [A] (verified)

Time = 0.95 (sec) , antiderivative size = 107, normalized size of antiderivative = 0.56

method result size
default \(\frac {\sqrt {x^{2} d -c}\, \sqrt {b \,x^{2}+a}\, c \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {-x^{2} d +c}{c}}\, \operatorname {EllipticE}\left (x \sqrt {-\frac {b}{a}}, \sqrt {-\frac {a d}{b c}}\right )}{\left (-b d \,x^{4}-a d \,x^{2}+x^{2} b c +a c \right ) \sqrt {-\frac {b}{a}}}\) \(107\)
elliptic \(\frac {\sqrt {-\left (-x^{2} d +c \right ) \left (b \,x^{2}+a \right )}\, \left (-\frac {c \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1-\frac {d \,x^{2}}{c}}\, \operatorname {EllipticF}\left (x \sqrt {-\frac {b}{a}}, \sqrt {-1-\frac {a d -b c}{c b}}\right )}{\sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}-x^{2} b c -a c}}+\frac {c \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1-\frac {d \,x^{2}}{c}}\, \left (\operatorname {EllipticF}\left (x \sqrt {-\frac {b}{a}}, \sqrt {-1-\frac {a d -b c}{c b}}\right )-\operatorname {EllipticE}\left (x \sqrt {-\frac {b}{a}}, \sqrt {-1-\frac {a d -b c}{c b}}\right )\right )}{\sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}-x^{2} b c -a c}}\right )}{\sqrt {x^{2} d -c}\, \sqrt {b \,x^{2}+a}}\) \(261\)

Input:

int((d*x^2-c)^(1/2)/(b*x^2+a)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

(d*x^2-c)^(1/2)*(b*x^2+a)^(1/2)*c*((b*x^2+a)/a)^(1/2)*((-d*x^2+c)/c)^(1/2) 
*EllipticE(x*(-b/a)^(1/2),(-a*d/b/c)^(1/2))/(-b*d*x^4-a*d*x^2+b*c*x^2+a*c) 
/(-b/a)^(1/2)
 

Fricas [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 114, normalized size of antiderivative = 0.59 \[ \int \frac {\sqrt {-c+d x^2}}{\sqrt {a+b x^2}} \, dx=\frac {\sqrt {b d} c x \sqrt {\frac {c}{d}} E(\arcsin \left (\frac {\sqrt {\frac {c}{d}}}{x}\right )\,|\,-\frac {a d}{b c}) - \sqrt {b d} {\left (c - d\right )} x \sqrt {\frac {c}{d}} F(\arcsin \left (\frac {\sqrt {\frac {c}{d}}}{x}\right )\,|\,-\frac {a d}{b c}) + \sqrt {b x^{2} + a} \sqrt {d x^{2} - c} d}{b d x} \] Input:

integrate((d*x^2-c)^(1/2)/(b*x^2+a)^(1/2),x, algorithm="fricas")
 

Output:

(sqrt(b*d)*c*x*sqrt(c/d)*elliptic_e(arcsin(sqrt(c/d)/x), -a*d/(b*c)) - sqr 
t(b*d)*(c - d)*x*sqrt(c/d)*elliptic_f(arcsin(sqrt(c/d)/x), -a*d/(b*c)) + s 
qrt(b*x^2 + a)*sqrt(d*x^2 - c)*d)/(b*d*x)
 

Sympy [F]

\[ \int \frac {\sqrt {-c+d x^2}}{\sqrt {a+b x^2}} \, dx=\int \frac {\sqrt {- c + d x^{2}}}{\sqrt {a + b x^{2}}}\, dx \] Input:

integrate((d*x**2-c)**(1/2)/(b*x**2+a)**(1/2),x)
 

Output:

Integral(sqrt(-c + d*x**2)/sqrt(a + b*x**2), x)
 

Maxima [F]

\[ \int \frac {\sqrt {-c+d x^2}}{\sqrt {a+b x^2}} \, dx=\int { \frac {\sqrt {d x^{2} - c}}{\sqrt {b x^{2} + a}} \,d x } \] Input:

integrate((d*x^2-c)^(1/2)/(b*x^2+a)^(1/2),x, algorithm="maxima")
 

Output:

integrate(sqrt(d*x^2 - c)/sqrt(b*x^2 + a), x)
 

Giac [F]

\[ \int \frac {\sqrt {-c+d x^2}}{\sqrt {a+b x^2}} \, dx=\int { \frac {\sqrt {d x^{2} - c}}{\sqrt {b x^{2} + a}} \,d x } \] Input:

integrate((d*x^2-c)^(1/2)/(b*x^2+a)^(1/2),x, algorithm="giac")
 

Output:

integrate(sqrt(d*x^2 - c)/sqrt(b*x^2 + a), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {-c+d x^2}}{\sqrt {a+b x^2}} \, dx=\int \frac {\sqrt {d\,x^2-c}}{\sqrt {b\,x^2+a}} \,d x \] Input:

int((d*x^2 - c)^(1/2)/(a + b*x^2)^(1/2),x)
 

Output:

int((d*x^2 - c)^(1/2)/(a + b*x^2)^(1/2), x)
 

Reduce [F]

\[ \int \frac {\sqrt {-c+d x^2}}{\sqrt {a+b x^2}} \, dx=\int \frac {\sqrt {b \,x^{2}+a}\, \sqrt {d \,x^{2}-c}}{b \,x^{2}+a}d x \] Input:

int((d*x^2-c)^(1/2)/(b*x^2+a)^(1/2),x)
 

Output:

int((sqrt(a + b*x**2)*sqrt( - c + d*x**2))/(a + b*x**2),x)