\(\int \frac {1}{\sqrt [3]{1+x^2} (9+x^2)} \, dx\) [370]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 17, antiderivative size = 70 \[ \int \frac {1}{\sqrt [3]{1+x^2} \left (9+x^2\right )} \, dx=\frac {1}{12} \arctan \left (\frac {x}{3}\right )+\frac {1}{12} \arctan \left (\frac {\left (1-\sqrt [3]{1+x^2}\right )^2}{3 x}\right )-\frac {\text {arctanh}\left (\frac {\sqrt {3} \left (1-\sqrt [3]{1+x^2}\right )}{x}\right )}{4 \sqrt {3}} \] Output:

1/12*arctan(1/3*x)+1/12*arctan(1/3*(1-(x^2+1)^(1/3))^2/x)-1/12*arctanh(3^( 
1/2)*(1-(x^2+1)^(1/3))/x)*3^(1/2)
                                                                                    
                                                                                    
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 6 vs. order 3 in optimal.

Time = 4.52 (sec) , antiderivative size = 124, normalized size of antiderivative = 1.77 \[ \int \frac {1}{\sqrt [3]{1+x^2} \left (9+x^2\right )} \, dx=-\frac {27 x \operatorname {AppellF1}\left (\frac {1}{2},\frac {1}{3},1,\frac {3}{2},-x^2,-\frac {x^2}{9}\right )}{\sqrt [3]{1+x^2} \left (9+x^2\right ) \left (-27 \operatorname {AppellF1}\left (\frac {1}{2},\frac {1}{3},1,\frac {3}{2},-x^2,-\frac {x^2}{9}\right )+2 x^2 \left (\operatorname {AppellF1}\left (\frac {3}{2},\frac {1}{3},2,\frac {5}{2},-x^2,-\frac {x^2}{9}\right )+3 \operatorname {AppellF1}\left (\frac {3}{2},\frac {4}{3},1,\frac {5}{2},-x^2,-\frac {x^2}{9}\right )\right )\right )} \] Input:

Integrate[1/((1 + x^2)^(1/3)*(9 + x^2)),x]
 

Output:

(-27*x*AppellF1[1/2, 1/3, 1, 3/2, -x^2, -1/9*x^2])/((1 + x^2)^(1/3)*(9 + x 
^2)*(-27*AppellF1[1/2, 1/3, 1, 3/2, -x^2, -1/9*x^2] + 2*x^2*(AppellF1[3/2, 
 1/3, 2, 5/2, -x^2, -1/9*x^2] + 3*AppellF1[3/2, 4/3, 1, 5/2, -x^2, -1/9*x^ 
2])))
 

Rubi [A] (verified)

Time = 0.16 (sec) , antiderivative size = 70, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.059, Rules used = {306}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\sqrt [3]{x^2+1} \left (x^2+9\right )} \, dx\)

\(\Big \downarrow \) 306

\(\displaystyle \frac {1}{12} \arctan \left (\frac {\left (1-\sqrt [3]{x^2+1}\right )^2}{3 x}\right )+\frac {1}{12} \arctan \left (\frac {x}{3}\right )-\frac {\text {arctanh}\left (\frac {\sqrt {3} \left (1-\sqrt [3]{x^2+1}\right )}{x}\right )}{4 \sqrt {3}}\)

Input:

Int[1/((1 + x^2)^(1/3)*(9 + x^2)),x]
 

Output:

ArcTan[x/3]/12 + ArcTan[(1 - (1 + x^2)^(1/3))^2/(3*x)]/12 - ArcTanh[(Sqrt[ 
3]*(1 - (1 + x^2)^(1/3)))/x]/(4*Sqrt[3])
 

Defintions of rubi rules used

rule 306
Int[1/(((a_) + (b_.)*(x_)^2)^(1/3)*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Wit 
h[{q = Rt[b/a, 2]}, Simp[q*(ArcTan[q*(x/3)]/(12*Rt[a, 3]*d)), x] + (Simp[q* 
(ArcTan[(Rt[a, 3] - (a + b*x^2)^(1/3))^2/(3*Rt[a, 3]^2*q*x)]/(12*Rt[a, 3]*d 
)), x] - Simp[q*(ArcTanh[(Sqrt[3]*(Rt[a, 3] - (a + b*x^2)^(1/3)))/(Rt[a, 3] 
*q*x)]/(4*Sqrt[3]*Rt[a, 3]*d)), x])] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - 
 a*d, 0] && EqQ[b*c - 9*a*d, 0] && PosQ[b/a]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 8.86 (sec) , antiderivative size = 622, normalized size of antiderivative = 8.89

method result size
trager \(-144 \operatorname {RootOf}\left (20736 \textit {\_Z}^{4}-144 \textit {\_Z}^{2}+1\right )^{3} \ln \left (-\frac {-497664 \operatorname {RootOf}\left (20736 \textit {\_Z}^{4}-144 \textit {\_Z}^{2}+1\right )^{5} \left (x^{2}+1\right )^{\frac {1}{3}} x +995328 \operatorname {RootOf}\left (20736 \textit {\_Z}^{4}-144 \textit {\_Z}^{2}+1\right )^{5} x +6912 \operatorname {RootOf}\left (20736 \textit {\_Z}^{4}-144 \textit {\_Z}^{2}+1\right )^{3} \left (x^{2}+1\right )^{\frac {1}{3}} x -20736 \operatorname {RootOf}\left (20736 \textit {\_Z}^{4}-144 \textit {\_Z}^{2}+1\right )^{3} x +144 \operatorname {RootOf}\left (20736 \textit {\_Z}^{4}-144 \textit {\_Z}^{2}+1\right )^{2} x^{2}-864 \operatorname {RootOf}\left (20736 \textit {\_Z}^{4}-144 \textit {\_Z}^{2}+1\right )^{2} \left (x^{2}+1\right )^{\frac {1}{3}}+6 \left (x^{2}+1\right )^{\frac {2}{3}}-432 \operatorname {RootOf}\left (20736 \textit {\_Z}^{4}-144 \textit {\_Z}^{2}+1\right )^{2}+96 \operatorname {RootOf}\left (20736 \textit {\_Z}^{4}-144 \textit {\_Z}^{2}+1\right ) x -x^{2}+3}{x^{2}+9}\right )+\operatorname {RootOf}\left (20736 \textit {\_Z}^{4}-144 \textit {\_Z}^{2}+1\right ) \ln \left (-\frac {-497664 \operatorname {RootOf}\left (20736 \textit {\_Z}^{4}-144 \textit {\_Z}^{2}+1\right )^{5} \left (x^{2}+1\right )^{\frac {1}{3}} x +995328 \operatorname {RootOf}\left (20736 \textit {\_Z}^{4}-144 \textit {\_Z}^{2}+1\right )^{5} x +6912 \operatorname {RootOf}\left (20736 \textit {\_Z}^{4}-144 \textit {\_Z}^{2}+1\right )^{3} \left (x^{2}+1\right )^{\frac {1}{3}} x -20736 \operatorname {RootOf}\left (20736 \textit {\_Z}^{4}-144 \textit {\_Z}^{2}+1\right )^{3} x +144 \operatorname {RootOf}\left (20736 \textit {\_Z}^{4}-144 \textit {\_Z}^{2}+1\right )^{2} x^{2}-864 \operatorname {RootOf}\left (20736 \textit {\_Z}^{4}-144 \textit {\_Z}^{2}+1\right )^{2} \left (x^{2}+1\right )^{\frac {1}{3}}+6 \left (x^{2}+1\right )^{\frac {2}{3}}-432 \operatorname {RootOf}\left (20736 \textit {\_Z}^{4}-144 \textit {\_Z}^{2}+1\right )^{2}+96 \operatorname {RootOf}\left (20736 \textit {\_Z}^{4}-144 \textit {\_Z}^{2}+1\right ) x -x^{2}+3}{x^{2}+9}\right )+\operatorname {RootOf}\left (20736 \textit {\_Z}^{4}-144 \textit {\_Z}^{2}+1\right ) \ln \left (-\frac {82944 \operatorname {RootOf}\left (20736 \textit {\_Z}^{4}-144 \textit {\_Z}^{2}+1\right )^{5} \left (x^{2}+1\right )^{\frac {1}{3}} x -165888 \operatorname {RootOf}\left (20736 \textit {\_Z}^{4}-144 \textit {\_Z}^{2}+1\right )^{5} x -1728 \operatorname {RootOf}\left (20736 \textit {\_Z}^{4}-144 \textit {\_Z}^{2}+1\right )^{3} \left (x^{2}+1\right )^{\frac {1}{3}} x +2304 \operatorname {RootOf}\left (20736 \textit {\_Z}^{4}-144 \textit {\_Z}^{2}+1\right )^{3} x -24 \operatorname {RootOf}\left (20736 \textit {\_Z}^{4}-144 \textit {\_Z}^{2}+1\right )^{2} x^{2}+144 \operatorname {RootOf}\left (20736 \textit {\_Z}^{4}-144 \textit {\_Z}^{2}+1\right )^{2} \left (x^{2}+1\right )^{\frac {1}{3}}+8 \operatorname {RootOf}\left (20736 \textit {\_Z}^{4}-144 \textit {\_Z}^{2}+1\right ) \left (x^{2}+1\right )^{\frac {1}{3}} x +\left (x^{2}+1\right )^{\frac {2}{3}}+72 \operatorname {RootOf}\left (20736 \textit {\_Z}^{4}-144 \textit {\_Z}^{2}+1\right )^{2}-\left (x^{2}+1\right )^{\frac {1}{3}}}{x^{2}+9}\right )\) \(622\)

Input:

int(1/(x^2+1)^(1/3)/(x^2+9),x,method=_RETURNVERBOSE)
 

Output:

-144*RootOf(20736*_Z^4-144*_Z^2+1)^3*ln(-(-497664*RootOf(20736*_Z^4-144*_Z 
^2+1)^5*(x^2+1)^(1/3)*x+995328*RootOf(20736*_Z^4-144*_Z^2+1)^5*x+6912*Root 
Of(20736*_Z^4-144*_Z^2+1)^3*(x^2+1)^(1/3)*x-20736*RootOf(20736*_Z^4-144*_Z 
^2+1)^3*x+144*RootOf(20736*_Z^4-144*_Z^2+1)^2*x^2-864*RootOf(20736*_Z^4-14 
4*_Z^2+1)^2*(x^2+1)^(1/3)+6*(x^2+1)^(2/3)-432*RootOf(20736*_Z^4-144*_Z^2+1 
)^2+96*RootOf(20736*_Z^4-144*_Z^2+1)*x-x^2+3)/(x^2+9))+RootOf(20736*_Z^4-1 
44*_Z^2+1)*ln(-(-497664*RootOf(20736*_Z^4-144*_Z^2+1)^5*(x^2+1)^(1/3)*x+99 
5328*RootOf(20736*_Z^4-144*_Z^2+1)^5*x+6912*RootOf(20736*_Z^4-144*_Z^2+1)^ 
3*(x^2+1)^(1/3)*x-20736*RootOf(20736*_Z^4-144*_Z^2+1)^3*x+144*RootOf(20736 
*_Z^4-144*_Z^2+1)^2*x^2-864*RootOf(20736*_Z^4-144*_Z^2+1)^2*(x^2+1)^(1/3)+ 
6*(x^2+1)^(2/3)-432*RootOf(20736*_Z^4-144*_Z^2+1)^2+96*RootOf(20736*_Z^4-1 
44*_Z^2+1)*x-x^2+3)/(x^2+9))+RootOf(20736*_Z^4-144*_Z^2+1)*ln(-(82944*Root 
Of(20736*_Z^4-144*_Z^2+1)^5*(x^2+1)^(1/3)*x-165888*RootOf(20736*_Z^4-144*_ 
Z^2+1)^5*x-1728*RootOf(20736*_Z^4-144*_Z^2+1)^3*(x^2+1)^(1/3)*x+2304*RootO 
f(20736*_Z^4-144*_Z^2+1)^3*x-24*RootOf(20736*_Z^4-144*_Z^2+1)^2*x^2+144*Ro 
otOf(20736*_Z^4-144*_Z^2+1)^2*(x^2+1)^(1/3)+8*RootOf(20736*_Z^4-144*_Z^2+1 
)*(x^2+1)^(1/3)*x+(x^2+1)^(2/3)+72*RootOf(20736*_Z^4-144*_Z^2+1)^2-(x^2+1) 
^(1/3))/(x^2+9))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 781 vs. \(2 (49) = 98\).

Time = 1.15 (sec) , antiderivative size = 781, normalized size of antiderivative = 11.16 \[ \int \frac {1}{\sqrt [3]{1+x^2} \left (9+x^2\right )} \, dx=\text {Too large to display} \] Input:

integrate(1/(x^2+1)^(1/3)/(x^2+9),x, algorithm="fricas")
 

Output:

1/144*sqrt(3)*log((x^6 + 1647*x^4 + 891*x^2 + 18*(3*x^4 + 32*sqrt(3)*x^3 + 
 126*x^2 + 27)*(x^2 + 1)^(2/3) + 108*sqrt(3)*(x^5 + 10*x^3 + 9*x) + 6*(81* 
x^4 + 162*x^2 + sqrt(3)*(x^5 + 210*x^3 + 81*x) + 81)*(x^2 + 1)^(1/3) - 243 
)/(x^6 + 27*x^4 + 243*x^2 + 729)) - 1/144*sqrt(3)*log((x^6 + 1647*x^4 + 89 
1*x^2 + 18*(3*x^4 - 32*sqrt(3)*x^3 + 126*x^2 + 27)*(x^2 + 1)^(2/3) - 108*s 
qrt(3)*(x^5 + 10*x^3 + 9*x) + 6*(81*x^4 + 162*x^2 - sqrt(3)*(x^5 + 210*x^3 
 + 81*x) + 81)*(x^2 + 1)^(1/3) - 243)/(x^6 + 27*x^4 + 243*x^2 + 729)) - 1/ 
72*arctan((384*x^11 - 130320*x^9 + 2379456*x^7 - 629856*x^5 - 1259712*x^3 
+ 36*(388*x^9 - 27864*x^7 + 303264*x^5 + 17496*x^3 + sqrt(3)*(x^10 + 549*x 
^8 - 8046*x^6 + 129762*x^4 - 19683*x^2 + 59049) - 236196*x)*(x^2 + 1)^(2/3 
) + sqrt(3)*(x^12 - 234*x^10 + 229311*x^8 - 1214028*x^6 + 6816879*x^4 + 60 
22998*x^2 + 531441) + 12*(x^11 - 6423*x^9 + 225018*x^7 - 1106622*x^5 - 154 
1835*x^3 + 3*sqrt(3)*(37*x^10 - 675*x^8 + 34722*x^6 - 97686*x^4 + 59049*x^ 
2 + 59049) - 177147*x)*(x^2 + 1)^(1/3) - 8503056*x)/(x^12 - 48978*x^10 + 2 
332071*x^8 - 16419996*x^6 - 24151041*x^4 - 9565938*x^2 + 4782969)) + 1/72* 
arctan(-(384*x^11 - 130320*x^9 + 2379456*x^7 - 629856*x^5 - 1259712*x^3 + 
36*(388*x^9 - 27864*x^7 + 303264*x^5 + 17496*x^3 - sqrt(3)*(x^10 + 549*x^8 
 - 8046*x^6 + 129762*x^4 - 19683*x^2 + 59049) - 236196*x)*(x^2 + 1)^(2/3) 
- sqrt(3)*(x^12 - 234*x^10 + 229311*x^8 - 1214028*x^6 + 6816879*x^4 + 6022 
998*x^2 + 531441) + 12*(x^11 - 6423*x^9 + 225018*x^7 - 1106622*x^5 - 15...
 

Sympy [F]

\[ \int \frac {1}{\sqrt [3]{1+x^2} \left (9+x^2\right )} \, dx=\int \frac {1}{\sqrt [3]{x^{2} + 1} \left (x^{2} + 9\right )}\, dx \] Input:

integrate(1/(x**2+1)**(1/3)/(x**2+9),x)
 

Output:

Integral(1/((x**2 + 1)**(1/3)*(x**2 + 9)), x)
 

Maxima [F]

\[ \int \frac {1}{\sqrt [3]{1+x^2} \left (9+x^2\right )} \, dx=\int { \frac {1}{{\left (x^{2} + 9\right )} {\left (x^{2} + 1\right )}^{\frac {1}{3}}} \,d x } \] Input:

integrate(1/(x^2+1)^(1/3)/(x^2+9),x, algorithm="maxima")
 

Output:

integrate(1/((x^2 + 9)*(x^2 + 1)^(1/3)), x)
 

Giac [F]

\[ \int \frac {1}{\sqrt [3]{1+x^2} \left (9+x^2\right )} \, dx=\int { \frac {1}{{\left (x^{2} + 9\right )} {\left (x^{2} + 1\right )}^{\frac {1}{3}}} \,d x } \] Input:

integrate(1/(x^2+1)^(1/3)/(x^2+9),x, algorithm="giac")
 

Output:

integrate(1/((x^2 + 9)*(x^2 + 1)^(1/3)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt [3]{1+x^2} \left (9+x^2\right )} \, dx=\int \frac {1}{{\left (x^2+1\right )}^{1/3}\,\left (x^2+9\right )} \,d x \] Input:

int(1/((x^2 + 1)^(1/3)*(x^2 + 9)),x)
 

Output:

int(1/((x^2 + 1)^(1/3)*(x^2 + 9)), x)
 

Reduce [F]

\[ \int \frac {1}{\sqrt [3]{1+x^2} \left (9+x^2\right )} \, dx=\int \frac {1}{\left (x^{2}+1\right )^{\frac {1}{3}} x^{2}+9 \left (x^{2}+1\right )^{\frac {1}{3}}}d x \] Input:

int(1/(x^2+1)^(1/3)/(x^2+9),x)
 

Output:

int(1/((x**2 + 1)**(1/3)*x**2 + 9*(x**2 + 1)**(1/3)),x)