\(\int \frac {(a+b x^2)^{5/2}}{x^2 \sqrt {c+d x^2}} \, dx\) [1197]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 26, antiderivative size = 348 \[ \int \frac {\left (a+b x^2\right )^{5/2}}{x^2 \sqrt {c+d x^2}} \, dx=-\frac {b \left (2 b^2 c^2-7 a b c d-3 a^2 d^2\right ) x \sqrt {c+d x^2}}{3 c d^2 \sqrt {a+b x^2}}+\frac {b (b c+3 a d) x \sqrt {a+b x^2} \sqrt {c+d x^2}}{3 c d}-\frac {a \left (a+b x^2\right )^{3/2} \sqrt {c+d x^2}}{c x}+\frac {\sqrt {a} \sqrt {b} \left (2 b^2 c^2-7 a b c d-3 a^2 d^2\right ) \sqrt {c+d x^2} E\left (\arctan \left (\frac {\sqrt {b} x}{\sqrt {a}}\right )|1-\frac {a d}{b c}\right )}{3 c d^2 \sqrt {a+b x^2} \sqrt {\frac {a \left (c+d x^2\right )}{c \left (a+b x^2\right )}}}-\frac {a^{3/2} \sqrt {b} (b c-9 a d) \sqrt {c+d x^2} \operatorname {EllipticF}\left (\arctan \left (\frac {\sqrt {b} x}{\sqrt {a}}\right ),1-\frac {a d}{b c}\right )}{3 c d \sqrt {a+b x^2} \sqrt {\frac {a \left (c+d x^2\right )}{c \left (a+b x^2\right )}}} \] Output:

-1/3*b*(-3*a^2*d^2-7*a*b*c*d+2*b^2*c^2)*x*(d*x^2+c)^(1/2)/c/d^2/(b*x^2+a)^ 
(1/2)+1/3*b*(3*a*d+b*c)*x*(b*x^2+a)^(1/2)*(d*x^2+c)^(1/2)/c/d-a*(b*x^2+a)^ 
(3/2)*(d*x^2+c)^(1/2)/c/x+1/3*a^(1/2)*b^(1/2)*(-3*a^2*d^2-7*a*b*c*d+2*b^2* 
c^2)*(d*x^2+c)^(1/2)*EllipticE(b^(1/2)*x/a^(1/2)/(1+b*x^2/a)^(1/2),(1-a*d/ 
b/c)^(1/2))/c/d^2/(b*x^2+a)^(1/2)/(a*(d*x^2+c)/c/(b*x^2+a))^(1/2)-1/3*a^(3 
/2)*b^(1/2)*(-9*a*d+b*c)*(d*x^2+c)^(1/2)*InverseJacobiAM(arctan(b^(1/2)*x/ 
a^(1/2)),(1-a*d/b/c)^(1/2))/c/d/(b*x^2+a)^(1/2)/(a*(d*x^2+c)/c/(b*x^2+a))^ 
(1/2)
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 2.84 (sec) , antiderivative size = 254, normalized size of antiderivative = 0.73 \[ \int \frac {\left (a+b x^2\right )^{5/2}}{x^2 \sqrt {c+d x^2}} \, dx=\frac {-\sqrt {\frac {b}{a}} d \left (a+b x^2\right ) \left (3 a^2 d-b^2 c x^2\right ) \left (c+d x^2\right )-i b c \left (-2 b^2 c^2+7 a b c d+3 a^2 d^2\right ) x \sqrt {1+\frac {b x^2}{a}} \sqrt {1+\frac {d x^2}{c}} E\left (i \text {arcsinh}\left (\sqrt {\frac {b}{a}} x\right )|\frac {a d}{b c}\right )-2 i b c \left (b^2 c^2-4 a b c d+3 a^2 d^2\right ) x \sqrt {1+\frac {b x^2}{a}} \sqrt {1+\frac {d x^2}{c}} \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {\frac {b}{a}} x\right ),\frac {a d}{b c}\right )}{3 \sqrt {\frac {b}{a}} c d^2 x \sqrt {a+b x^2} \sqrt {c+d x^2}} \] Input:

Integrate[(a + b*x^2)^(5/2)/(x^2*Sqrt[c + d*x^2]),x]
 

Output:

(-(Sqrt[b/a]*d*(a + b*x^2)*(3*a^2*d - b^2*c*x^2)*(c + d*x^2)) - I*b*c*(-2* 
b^2*c^2 + 7*a*b*c*d + 3*a^2*d^2)*x*Sqrt[1 + (b*x^2)/a]*Sqrt[1 + (d*x^2)/c] 
*EllipticE[I*ArcSinh[Sqrt[b/a]*x], (a*d)/(b*c)] - (2*I)*b*c*(b^2*c^2 - 4*a 
*b*c*d + 3*a^2*d^2)*x*Sqrt[1 + (b*x^2)/a]*Sqrt[1 + (d*x^2)/c]*EllipticF[I* 
ArcSinh[Sqrt[b/a]*x], (a*d)/(b*c)])/(3*Sqrt[b/a]*c*d^2*x*Sqrt[a + b*x^2]*S 
qrt[c + d*x^2])
 

Rubi [A] (verified)

Time = 0.44 (sec) , antiderivative size = 316, normalized size of antiderivative = 0.91, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.308, Rules used = {376, 27, 403, 25, 406, 320, 388, 313}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (a+b x^2\right )^{5/2}}{x^2 \sqrt {c+d x^2}} \, dx\)

\(\Big \downarrow \) 376

\(\displaystyle \frac {\int \frac {b \sqrt {b x^2+a} \left ((b c+3 a d) x^2+4 a c\right )}{\sqrt {d x^2+c}}dx}{c}-\frac {a \left (a+b x^2\right )^{3/2} \sqrt {c+d x^2}}{c x}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {b \int \frac {\sqrt {b x^2+a} \left ((b c+3 a d) x^2+4 a c\right )}{\sqrt {d x^2+c}}dx}{c}-\frac {a \left (a+b x^2\right )^{3/2} \sqrt {c+d x^2}}{c x}\)

\(\Big \downarrow \) 403

\(\displaystyle \frac {b \left (\frac {\int -\frac {\left (2 b^2 c^2-7 a b d c-3 a^2 d^2\right ) x^2+a c (b c-9 a d)}{\sqrt {b x^2+a} \sqrt {d x^2+c}}dx}{3 d}+\frac {x \sqrt {a+b x^2} \sqrt {c+d x^2} (3 a d+b c)}{3 d}\right )}{c}-\frac {a \left (a+b x^2\right )^{3/2} \sqrt {c+d x^2}}{c x}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {b \left (\frac {x \sqrt {a+b x^2} \sqrt {c+d x^2} (3 a d+b c)}{3 d}-\frac {\int \frac {\left (2 b^2 c^2-7 a b d c-3 a^2 d^2\right ) x^2+a c (b c-9 a d)}{\sqrt {b x^2+a} \sqrt {d x^2+c}}dx}{3 d}\right )}{c}-\frac {a \left (a+b x^2\right )^{3/2} \sqrt {c+d x^2}}{c x}\)

\(\Big \downarrow \) 406

\(\displaystyle \frac {b \left (\frac {x \sqrt {a+b x^2} \sqrt {c+d x^2} (3 a d+b c)}{3 d}-\frac {\left (-3 a^2 d^2-7 a b c d+2 b^2 c^2\right ) \int \frac {x^2}{\sqrt {b x^2+a} \sqrt {d x^2+c}}dx+a c (b c-9 a d) \int \frac {1}{\sqrt {b x^2+a} \sqrt {d x^2+c}}dx}{3 d}\right )}{c}-\frac {a \left (a+b x^2\right )^{3/2} \sqrt {c+d x^2}}{c x}\)

\(\Big \downarrow \) 320

\(\displaystyle \frac {b \left (\frac {x \sqrt {a+b x^2} \sqrt {c+d x^2} (3 a d+b c)}{3 d}-\frac {\left (-3 a^2 d^2-7 a b c d+2 b^2 c^2\right ) \int \frac {x^2}{\sqrt {b x^2+a} \sqrt {d x^2+c}}dx+\frac {c^{3/2} \sqrt {a+b x^2} (b c-9 a d) \operatorname {EllipticF}\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right ),1-\frac {b c}{a d}\right )}{\sqrt {d} \sqrt {c+d x^2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}}{3 d}\right )}{c}-\frac {a \left (a+b x^2\right )^{3/2} \sqrt {c+d x^2}}{c x}\)

\(\Big \downarrow \) 388

\(\displaystyle \frac {b \left (\frac {x \sqrt {a+b x^2} \sqrt {c+d x^2} (3 a d+b c)}{3 d}-\frac {\left (-3 a^2 d^2-7 a b c d+2 b^2 c^2\right ) \left (\frac {x \sqrt {a+b x^2}}{b \sqrt {c+d x^2}}-\frac {c \int \frac {\sqrt {b x^2+a}}{\left (d x^2+c\right )^{3/2}}dx}{b}\right )+\frac {c^{3/2} \sqrt {a+b x^2} (b c-9 a d) \operatorname {EllipticF}\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right ),1-\frac {b c}{a d}\right )}{\sqrt {d} \sqrt {c+d x^2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}}{3 d}\right )}{c}-\frac {a \left (a+b x^2\right )^{3/2} \sqrt {c+d x^2}}{c x}\)

\(\Big \downarrow \) 313

\(\displaystyle \frac {b \left (\frac {x \sqrt {a+b x^2} \sqrt {c+d x^2} (3 a d+b c)}{3 d}-\frac {\left (-3 a^2 d^2-7 a b c d+2 b^2 c^2\right ) \left (\frac {x \sqrt {a+b x^2}}{b \sqrt {c+d x^2}}-\frac {\sqrt {c} \sqrt {a+b x^2} E\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{b \sqrt {d} \sqrt {c+d x^2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}\right )+\frac {c^{3/2} \sqrt {a+b x^2} (b c-9 a d) \operatorname {EllipticF}\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right ),1-\frac {b c}{a d}\right )}{\sqrt {d} \sqrt {c+d x^2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}}{3 d}\right )}{c}-\frac {a \left (a+b x^2\right )^{3/2} \sqrt {c+d x^2}}{c x}\)

Input:

Int[(a + b*x^2)^(5/2)/(x^2*Sqrt[c + d*x^2]),x]
 

Output:

-((a*(a + b*x^2)^(3/2)*Sqrt[c + d*x^2])/(c*x)) + (b*(((b*c + 3*a*d)*x*Sqrt 
[a + b*x^2]*Sqrt[c + d*x^2])/(3*d) - ((2*b^2*c^2 - 7*a*b*c*d - 3*a^2*d^2)* 
((x*Sqrt[a + b*x^2])/(b*Sqrt[c + d*x^2]) - (Sqrt[c]*Sqrt[a + b*x^2]*Ellipt 
icE[ArcTan[(Sqrt[d]*x)/Sqrt[c]], 1 - (b*c)/(a*d)])/(b*Sqrt[d]*Sqrt[(c*(a + 
 b*x^2))/(a*(c + d*x^2))]*Sqrt[c + d*x^2])) + (c^(3/2)*(b*c - 9*a*d)*Sqrt[ 
a + b*x^2]*EllipticF[ArcTan[(Sqrt[d]*x)/Sqrt[c]], 1 - (b*c)/(a*d)])/(Sqrt[ 
d]*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]*Sqrt[c + d*x^2]))/(3*d)))/c
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 313
Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Sim 
p[(Sqrt[a + b*x^2]/(c*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c 
+ d*x^2)))]))*EllipticE[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /; FreeQ 
[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]
 

rule 320
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> S 
imp[(Sqrt[a + b*x^2]/(a*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*( 
c + d*x^2)))]))*EllipticF[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /; Fre 
eQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]
 

rule 376
Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_) 
, x_Symbol] :> Simp[c*(e*x)^(m + 1)*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q - 1 
)/(a*e*(m + 1))), x] - Simp[1/(a*e^2*(m + 1))   Int[(e*x)^(m + 2)*(a + b*x^ 
2)^p*(c + d*x^2)^(q - 2)*Simp[c*(b*c - a*d)*(m + 1) + 2*c*(b*c*(p + 1) + a* 
d*(q - 1)) + d*((b*c - a*d)*(m + 1) + 2*b*c*(p + q))*x^2, x], x], x] /; Fre 
eQ[{a, b, c, d, e, p}, x] && NeQ[b*c - a*d, 0] && GtQ[q, 1] && LtQ[m, -1] & 
& IntBinomialQ[a, b, c, d, e, m, 2, p, q, x]
 

rule 388
Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] 
 :> Simp[x*(Sqrt[a + b*x^2]/(b*Sqrt[c + d*x^2])), x] - Simp[c/b   Int[Sqrt[ 
a + b*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - 
 a*d, 0] && PosQ[b/a] && PosQ[d/c] &&  !SimplerSqrtQ[b/a, d/c]
 

rule 403
Int[((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_.)*((e_) + (f_.)*( 
x_)^2), x_Symbol] :> Simp[f*x*(a + b*x^2)^(p + 1)*((c + d*x^2)^q/(b*(2*(p + 
 q + 1) + 1))), x] + Simp[1/(b*(2*(p + q + 1) + 1))   Int[(a + b*x^2)^p*(c 
+ d*x^2)^(q - 1)*Simp[c*(b*e - a*f + b*e*2*(p + q + 1)) + (d*(b*e - a*f) + 
f*2*q*(b*c - a*d) + b*d*e*2*(p + q + 1))*x^2, x], x], x] /; FreeQ[{a, b, c, 
 d, e, f, p}, x] && GtQ[q, 0] && NeQ[2*(p + q + 1) + 1, 0]
 

rule 406
Int[((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_.)*((e_) + (f_.)*( 
x_)^2), x_Symbol] :> Simp[e   Int[(a + b*x^2)^p*(c + d*x^2)^q, x], x] + Sim 
p[f   Int[x^2*(a + b*x^2)^p*(c + d*x^2)^q, x], x] /; FreeQ[{a, b, c, d, e, 
f, p, q}, x]
 
Maple [A] (verified)

Time = 5.39 (sec) , antiderivative size = 365, normalized size of antiderivative = 1.05

method result size
elliptic \(\frac {\sqrt {\left (b \,x^{2}+a \right ) \left (x^{2} d +c \right )}\, \left (-\frac {a^{2} \sqrt {b d \,x^{4}+a d \,x^{2}+x^{2} b c +a c}}{c x}+\frac {b^{2} x \sqrt {b d \,x^{4}+a d \,x^{2}+x^{2} b c +a c}}{3 d}+\frac {\left (3 a^{2} b -\frac {b^{2} a c}{3 d}\right ) \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \operatorname {EllipticF}\left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )}{\sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+x^{2} b c +a c}}-\frac {\left (3 a \,b^{2}+\frac {d b \,a^{2}}{c}-\frac {b^{2} \left (2 a d +2 b c \right )}{3 d}\right ) c \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \left (\operatorname {EllipticF}\left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )-\operatorname {EllipticE}\left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )\right )}{\sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+x^{2} b c +a c}\, d}\right )}{\sqrt {b \,x^{2}+a}\, \sqrt {x^{2} d +c}}\) \(365\)
risch \(-\frac {\sqrt {b \,x^{2}+a}\, \sqrt {x^{2} d +c}\, \left (-b^{2} c \,x^{2}+3 d \,a^{2}\right )}{3 d c x}+\frac {b \left (-\frac {\left (3 a^{2} d^{2}+7 a b c d -2 b^{2} c^{2}\right ) c \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \left (\operatorname {EllipticF}\left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )-\operatorname {EllipticE}\left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )\right )}{\sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+x^{2} b c +a c}\, d}+\frac {9 a^{2} c d \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \operatorname {EllipticF}\left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )}{\sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+x^{2} b c +a c}}-\frac {b \,c^{2} a \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \operatorname {EllipticF}\left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )}{\sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+x^{2} b c +a c}}\right ) \sqrt {\left (b \,x^{2}+a \right ) \left (x^{2} d +c \right )}}{3 c d \sqrt {b \,x^{2}+a}\, \sqrt {x^{2} d +c}}\) \(422\)
default \(\frac {\sqrt {b \,x^{2}+a}\, \sqrt {x^{2} d +c}\, \left (\sqrt {-\frac {b}{a}}\, b^{3} c \,d^{2} x^{6}-3 \sqrt {-\frac {b}{a}}\, a^{2} b \,d^{3} x^{4}+\sqrt {-\frac {b}{a}}\, a \,b^{2} c \,d^{2} x^{4}+\sqrt {-\frac {b}{a}}\, b^{3} c^{2} d \,x^{4}+6 \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {x^{2} d +c}{c}}\, \operatorname {EllipticF}\left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) a^{2} b c \,d^{2} x -8 \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {x^{2} d +c}{c}}\, \operatorname {EllipticF}\left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) a \,b^{2} c^{2} d x +2 \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {x^{2} d +c}{c}}\, \operatorname {EllipticF}\left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) b^{3} c^{3} x +3 \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {x^{2} d +c}{c}}\, \operatorname {EllipticE}\left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) a^{2} b c \,d^{2} x +7 \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {x^{2} d +c}{c}}\, \operatorname {EllipticE}\left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) a \,b^{2} c^{2} d x -2 \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {x^{2} d +c}{c}}\, \operatorname {EllipticE}\left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) b^{3} c^{3} x -3 \sqrt {-\frac {b}{a}}\, a^{3} d^{3} x^{2}-3 \sqrt {-\frac {b}{a}}\, a^{2} b c \,d^{2} x^{2}+\sqrt {-\frac {b}{a}}\, a \,b^{2} c^{2} d \,x^{2}-3 \sqrt {-\frac {b}{a}}\, a^{3} c \,d^{2}\right )}{3 \left (b d \,x^{4}+a d \,x^{2}+x^{2} b c +a c \right ) d^{2} \sqrt {-\frac {b}{a}}\, c x}\) \(568\)

Input:

int((b*x^2+a)^(5/2)/x^2/(d*x^2+c)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

((b*x^2+a)*(d*x^2+c))^(1/2)/(b*x^2+a)^(1/2)/(d*x^2+c)^(1/2)*(-a^2/c*(b*d*x 
^4+a*d*x^2+b*c*x^2+a*c)^(1/2)/x+1/3*b^2/d*x*(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^ 
(1/2)+(3*a^2*b-1/3*b^2/d*a*c)/(-b/a)^(1/2)*(1+b*x^2/a)^(1/2)*(1+d*x^2/c)^( 
1/2)/(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)*EllipticF(x*(-b/a)^(1/2),(-1+(a*d 
+b*c)/c/b)^(1/2))-(3*a*b^2+d*b*a^2/c-1/3*b^2/d*(2*a*d+2*b*c))*c/(-b/a)^(1/ 
2)*(1+b*x^2/a)^(1/2)*(1+d*x^2/c)^(1/2)/(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2) 
/d*(EllipticF(x*(-b/a)^(1/2),(-1+(a*d+b*c)/c/b)^(1/2))-EllipticE(x*(-b/a)^ 
(1/2),(-1+(a*d+b*c)/c/b)^(1/2))))
 

Fricas [F]

\[ \int \frac {\left (a+b x^2\right )^{5/2}}{x^2 \sqrt {c+d x^2}} \, dx=\int { \frac {{\left (b x^{2} + a\right )}^{\frac {5}{2}}}{\sqrt {d x^{2} + c} x^{2}} \,d x } \] Input:

integrate((b*x^2+a)^(5/2)/x^2/(d*x^2+c)^(1/2),x, algorithm="fricas")
 

Output:

integral((b^2*x^4 + 2*a*b*x^2 + a^2)*sqrt(b*x^2 + a)*sqrt(d*x^2 + c)/(d*x^ 
4 + c*x^2), x)
 

Sympy [F]

\[ \int \frac {\left (a+b x^2\right )^{5/2}}{x^2 \sqrt {c+d x^2}} \, dx=\int \frac {\left (a + b x^{2}\right )^{\frac {5}{2}}}{x^{2} \sqrt {c + d x^{2}}}\, dx \] Input:

integrate((b*x**2+a)**(5/2)/x**2/(d*x**2+c)**(1/2),x)
 

Output:

Integral((a + b*x**2)**(5/2)/(x**2*sqrt(c + d*x**2)), x)
 

Maxima [F]

\[ \int \frac {\left (a+b x^2\right )^{5/2}}{x^2 \sqrt {c+d x^2}} \, dx=\int { \frac {{\left (b x^{2} + a\right )}^{\frac {5}{2}}}{\sqrt {d x^{2} + c} x^{2}} \,d x } \] Input:

integrate((b*x^2+a)^(5/2)/x^2/(d*x^2+c)^(1/2),x, algorithm="maxima")
 

Output:

integrate((b*x^2 + a)^(5/2)/(sqrt(d*x^2 + c)*x^2), x)
 

Giac [F]

\[ \int \frac {\left (a+b x^2\right )^{5/2}}{x^2 \sqrt {c+d x^2}} \, dx=\int { \frac {{\left (b x^{2} + a\right )}^{\frac {5}{2}}}{\sqrt {d x^{2} + c} x^{2}} \,d x } \] Input:

integrate((b*x^2+a)^(5/2)/x^2/(d*x^2+c)^(1/2),x, algorithm="giac")
 

Output:

integrate((b*x^2 + a)^(5/2)/(sqrt(d*x^2 + c)*x^2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (a+b x^2\right )^{5/2}}{x^2 \sqrt {c+d x^2}} \, dx=\int \frac {{\left (b\,x^2+a\right )}^{5/2}}{x^2\,\sqrt {d\,x^2+c}} \,d x \] Input:

int((a + b*x^2)^(5/2)/(x^2*(c + d*x^2)^(1/2)),x)
                                                                                    
                                                                                    
 

Output:

int((a + b*x^2)^(5/2)/(x^2*(c + d*x^2)^(1/2)), x)
 

Reduce [F]

\[ \int \frac {\left (a+b x^2\right )^{5/2}}{x^2 \sqrt {c+d x^2}} \, dx=\frac {7 \sqrt {d \,x^{2}+c}\, \sqrt {b \,x^{2}+a}\, a b d -2 \sqrt {d \,x^{2}+c}\, \sqrt {b \,x^{2}+a}\, b^{2} c +\sqrt {d \,x^{2}+c}\, \sqrt {b \,x^{2}+a}\, b^{2} d \,x^{2}+3 \left (\int \frac {\sqrt {d \,x^{2}+c}\, \sqrt {b \,x^{2}+a}}{b d \,x^{6}+a d \,x^{4}+b c \,x^{4}+a c \,x^{2}}d x \right ) a^{3} d^{2} x +7 \left (\int \frac {\sqrt {d \,x^{2}+c}\, \sqrt {b \,x^{2}+a}}{b d \,x^{6}+a d \,x^{4}+b c \,x^{4}+a c \,x^{2}}d x \right ) a^{2} b c d x -2 \left (\int \frac {\sqrt {d \,x^{2}+c}\, \sqrt {b \,x^{2}+a}}{b d \,x^{6}+a d \,x^{4}+b c \,x^{4}+a c \,x^{2}}d x \right ) a \,b^{2} c^{2} x +9 \left (\int \frac {\sqrt {d \,x^{2}+c}\, \sqrt {b \,x^{2}+a}}{b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}d x \right ) a^{2} b \,d^{2} x -\left (\int \frac {\sqrt {d \,x^{2}+c}\, \sqrt {b \,x^{2}+a}}{b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}d x \right ) a \,b^{2} c d x}{3 d^{2} x} \] Input:

int((b*x^2+a)^(5/2)/x^2/(d*x^2+c)^(1/2),x)
 

Output:

(7*sqrt(c + d*x**2)*sqrt(a + b*x**2)*a*b*d - 2*sqrt(c + d*x**2)*sqrt(a + b 
*x**2)*b**2*c + sqrt(c + d*x**2)*sqrt(a + b*x**2)*b**2*d*x**2 + 3*int((sqr 
t(c + d*x**2)*sqrt(a + b*x**2))/(a*c*x**2 + a*d*x**4 + b*c*x**4 + b*d*x**6 
),x)*a**3*d**2*x + 7*int((sqrt(c + d*x**2)*sqrt(a + b*x**2))/(a*c*x**2 + a 
*d*x**4 + b*c*x**4 + b*d*x**6),x)*a**2*b*c*d*x - 2*int((sqrt(c + d*x**2)*s 
qrt(a + b*x**2))/(a*c*x**2 + a*d*x**4 + b*c*x**4 + b*d*x**6),x)*a*b**2*c** 
2*x + 9*int((sqrt(c + d*x**2)*sqrt(a + b*x**2))/(a*c + a*d*x**2 + b*c*x**2 
 + b*d*x**4),x)*a**2*b*d**2*x - int((sqrt(c + d*x**2)*sqrt(a + b*x**2))/(a 
*c + a*d*x**2 + b*c*x**2 + b*d*x**4),x)*a*b**2*c*d*x)/(3*d**2*x)