\(\int \frac {x^2}{(a+b x^2)^{3/2} \sqrt {c+d x^2}} \, dx\) [1245]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 26, antiderivative size = 190 \[ \int \frac {x^2}{\left (a+b x^2\right )^{3/2} \sqrt {c+d x^2}} \, dx=-\frac {\sqrt {a} \sqrt {c+d x^2} E\left (\arctan \left (\frac {\sqrt {b} x}{\sqrt {a}}\right )|1-\frac {a d}{b c}\right )}{\sqrt {b} (b c-a d) \sqrt {a+b x^2} \sqrt {\frac {a \left (c+d x^2\right )}{c \left (a+b x^2\right )}}}+\frac {\sqrt {a} \sqrt {c+d x^2} \operatorname {EllipticF}\left (\arctan \left (\frac {\sqrt {b} x}{\sqrt {a}}\right ),1-\frac {a d}{b c}\right )}{\sqrt {b} (b c-a d) \sqrt {a+b x^2} \sqrt {\frac {a \left (c+d x^2\right )}{c \left (a+b x^2\right )}}} \] Output:

-a^(1/2)*(d*x^2+c)^(1/2)*EllipticE(b^(1/2)*x/a^(1/2)/(1+b*x^2/a)^(1/2),(1- 
a*d/b/c)^(1/2))/b^(1/2)/(-a*d+b*c)/(b*x^2+a)^(1/2)/(a*(d*x^2+c)/c/(b*x^2+a 
))^(1/2)+a^(1/2)*(d*x^2+c)^(1/2)*InverseJacobiAM(arctan(b^(1/2)*x/a^(1/2)) 
,(1-a*d/b/c)^(1/2))/b^(1/2)/(-a*d+b*c)/(b*x^2+a)^(1/2)/(a*(d*x^2+c)/c/(b*x 
^2+a))^(1/2)
 

Mathematica [A] (verified)

Time = 1.83 (sec) , antiderivative size = 118, normalized size of antiderivative = 0.62 \[ \int \frac {x^2}{\left (a+b x^2\right )^{3/2} \sqrt {c+d x^2}} \, dx=-\frac {\sqrt {c+d x^2} \left (b x \sqrt {1+\frac {d x^2}{c}}+a \sqrt {-\frac {b}{a}} \sqrt {1+\frac {b x^2}{a}} E\left (\arcsin \left (\sqrt {-\frac {b}{a}} x\right )|\frac {a d}{b c}\right )\right )}{b (b c-a d) \sqrt {a+b x^2} \sqrt {1+\frac {d x^2}{c}}} \] Input:

Integrate[x^2/((a + b*x^2)^(3/2)*Sqrt[c + d*x^2]),x]
 

Output:

-((Sqrt[c + d*x^2]*(b*x*Sqrt[1 + (d*x^2)/c] + a*Sqrt[-(b/a)]*Sqrt[1 + (b*x 
^2)/a]*EllipticE[ArcSin[Sqrt[-(b/a)]*x], (a*d)/(b*c)]))/(b*(b*c - a*d)*Sqr 
t[a + b*x^2]*Sqrt[1 + (d*x^2)/c]))
 

Rubi [A] (verified)

Time = 0.33 (sec) , antiderivative size = 253, normalized size of antiderivative = 1.33, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.192, Rules used = {373, 324, 320, 388, 313}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^2}{\left (a+b x^2\right )^{3/2} \sqrt {c+d x^2}} \, dx\)

\(\Big \downarrow \) 373

\(\displaystyle \frac {\int \frac {\sqrt {d x^2+c}}{\sqrt {b x^2+a}}dx}{b c-a d}-\frac {x \sqrt {c+d x^2}}{\sqrt {a+b x^2} (b c-a d)}\)

\(\Big \downarrow \) 324

\(\displaystyle \frac {c \int \frac {1}{\sqrt {b x^2+a} \sqrt {d x^2+c}}dx+d \int \frac {x^2}{\sqrt {b x^2+a} \sqrt {d x^2+c}}dx}{b c-a d}-\frac {x \sqrt {c+d x^2}}{\sqrt {a+b x^2} (b c-a d)}\)

\(\Big \downarrow \) 320

\(\displaystyle \frac {d \int \frac {x^2}{\sqrt {b x^2+a} \sqrt {d x^2+c}}dx+\frac {c^{3/2} \sqrt {a+b x^2} \operatorname {EllipticF}\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right ),1-\frac {b c}{a d}\right )}{a \sqrt {d} \sqrt {c+d x^2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}}{b c-a d}-\frac {x \sqrt {c+d x^2}}{\sqrt {a+b x^2} (b c-a d)}\)

\(\Big \downarrow \) 388

\(\displaystyle \frac {d \left (\frac {x \sqrt {a+b x^2}}{b \sqrt {c+d x^2}}-\frac {c \int \frac {\sqrt {b x^2+a}}{\left (d x^2+c\right )^{3/2}}dx}{b}\right )+\frac {c^{3/2} \sqrt {a+b x^2} \operatorname {EllipticF}\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right ),1-\frac {b c}{a d}\right )}{a \sqrt {d} \sqrt {c+d x^2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}}{b c-a d}-\frac {x \sqrt {c+d x^2}}{\sqrt {a+b x^2} (b c-a d)}\)

\(\Big \downarrow \) 313

\(\displaystyle \frac {\frac {c^{3/2} \sqrt {a+b x^2} \operatorname {EllipticF}\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right ),1-\frac {b c}{a d}\right )}{a \sqrt {d} \sqrt {c+d x^2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}+d \left (\frac {x \sqrt {a+b x^2}}{b \sqrt {c+d x^2}}-\frac {\sqrt {c} \sqrt {a+b x^2} E\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{b \sqrt {d} \sqrt {c+d x^2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}\right )}{b c-a d}-\frac {x \sqrt {c+d x^2}}{\sqrt {a+b x^2} (b c-a d)}\)

Input:

Int[x^2/((a + b*x^2)^(3/2)*Sqrt[c + d*x^2]),x]
 

Output:

-((x*Sqrt[c + d*x^2])/((b*c - a*d)*Sqrt[a + b*x^2])) + (d*((x*Sqrt[a + b*x 
^2])/(b*Sqrt[c + d*x^2]) - (Sqrt[c]*Sqrt[a + b*x^2]*EllipticE[ArcTan[(Sqrt 
[d]*x)/Sqrt[c]], 1 - (b*c)/(a*d)])/(b*Sqrt[d]*Sqrt[(c*(a + b*x^2))/(a*(c + 
 d*x^2))]*Sqrt[c + d*x^2])) + (c^(3/2)*Sqrt[a + b*x^2]*EllipticF[ArcTan[(S 
qrt[d]*x)/Sqrt[c]], 1 - (b*c)/(a*d)])/(a*Sqrt[d]*Sqrt[(c*(a + b*x^2))/(a*( 
c + d*x^2))]*Sqrt[c + d*x^2]))/(b*c - a*d)
 

Defintions of rubi rules used

rule 313
Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Sim 
p[(Sqrt[a + b*x^2]/(c*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c 
+ d*x^2)))]))*EllipticE[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /; FreeQ 
[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]
 

rule 320
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> S 
imp[(Sqrt[a + b*x^2]/(a*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*( 
c + d*x^2)))]))*EllipticF[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /; Fre 
eQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]
 

rule 324
Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[ 
a   Int[1/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]), x], x] + Simp[b   Int[x^2/(Sqr 
t[a + b*x^2]*Sqrt[c + d*x^2]), x], x] /; FreeQ[{a, b, c, d}, x] && PosQ[d/c 
] && PosQ[b/a]
 

rule 373
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_ 
), x_Symbol] :> Simp[e*(e*x)^(m - 1)*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q + 
1)/(2*(b*c - a*d)*(p + 1))), x] - Simp[e^2/(2*(b*c - a*d)*(p + 1))   Int[(e 
*x)^(m - 2)*(a + b*x^2)^(p + 1)*(c + d*x^2)^q*Simp[c*(m - 1) + d*(m + 2*p + 
 2*q + 3)*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, q}, x] && NeQ[b*c - a*d, 
 0] && LtQ[p, -1] && GtQ[m, 1] && LeQ[m, 3] && IntBinomialQ[a, b, c, d, e, 
m, 2, p, q, x]
 

rule 388
Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] 
 :> Simp[x*(Sqrt[a + b*x^2]/(b*Sqrt[c + d*x^2])), x] - Simp[c/b   Int[Sqrt[ 
a + b*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - 
 a*d, 0] && PosQ[b/a] && PosQ[d/c] &&  !SimplerSqrtQ[b/a, d/c]
 
Maple [A] (verified)

Time = 5.92 (sec) , antiderivative size = 138, normalized size of antiderivative = 0.73

method result size
default \(\frac {\left (\sqrt {-\frac {b}{a}}\, d \,x^{3}-\sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {x^{2} d +c}{c}}\, \operatorname {EllipticE}\left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) c +\sqrt {-\frac {b}{a}}\, c x \right ) \sqrt {x^{2} d +c}\, \sqrt {b \,x^{2}+a}}{\sqrt {-\frac {b}{a}}\, \left (a d -b c \right ) \left (b d \,x^{4}+a d \,x^{2}+x^{2} b c +a c \right )}\) \(138\)
elliptic \(\frac {\sqrt {\left (b \,x^{2}+a \right ) \left (x^{2} d +c \right )}\, \left (\frac {\left (b d \,x^{2}+b c \right ) x}{b \left (a d -b c \right ) \sqrt {\left (x^{2}+\frac {a}{b}\right ) \left (b d \,x^{2}+b c \right )}}-\frac {c \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \operatorname {EllipticF}\left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )}{\left (a d -b c \right ) \sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+x^{2} b c +a c}}+\frac {c \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \left (\operatorname {EllipticF}\left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )-\operatorname {EllipticE}\left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )\right )}{\left (a d -b c \right ) \sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+x^{2} b c +a c}}\right )}{\sqrt {b \,x^{2}+a}\, \sqrt {x^{2} d +c}}\) \(312\)

Input:

int(x^2/(b*x^2+a)^(3/2)/(d*x^2+c)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

((-b/a)^(1/2)*d*x^3-((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticE(x*(- 
b/a)^(1/2),(a*d/b/c)^(1/2))*c+(-b/a)^(1/2)*c*x)*(d*x^2+c)^(1/2)*(b*x^2+a)^ 
(1/2)/(-b/a)^(1/2)/(a*d-b*c)/(b*d*x^4+a*d*x^2+b*c*x^2+a*c)
 

Fricas [A] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 163, normalized size of antiderivative = 0.86 \[ \int \frac {x^2}{\left (a+b x^2\right )^{3/2} \sqrt {c+d x^2}} \, dx=-\frac {\sqrt {b x^{2} + a} \sqrt {d x^{2} + c} a b x - {\left (b^{2} x^{2} + a b\right )} \sqrt {a c} \sqrt {-\frac {b}{a}} E(\arcsin \left (x \sqrt {-\frac {b}{a}}\right )\,|\,\frac {a d}{b c}) + {\left ({\left (a b + b^{2}\right )} x^{2} + a^{2} + a b\right )} \sqrt {a c} \sqrt {-\frac {b}{a}} F(\arcsin \left (x \sqrt {-\frac {b}{a}}\right )\,|\,\frac {a d}{b c})}{a^{2} b^{2} c - a^{3} b d + {\left (a b^{3} c - a^{2} b^{2} d\right )} x^{2}} \] Input:

integrate(x^2/(b*x^2+a)^(3/2)/(d*x^2+c)^(1/2),x, algorithm="fricas")
 

Output:

-(sqrt(b*x^2 + a)*sqrt(d*x^2 + c)*a*b*x - (b^2*x^2 + a*b)*sqrt(a*c)*sqrt(- 
b/a)*elliptic_e(arcsin(x*sqrt(-b/a)), a*d/(b*c)) + ((a*b + b^2)*x^2 + a^2 
+ a*b)*sqrt(a*c)*sqrt(-b/a)*elliptic_f(arcsin(x*sqrt(-b/a)), a*d/(b*c)))/( 
a^2*b^2*c - a^3*b*d + (a*b^3*c - a^2*b^2*d)*x^2)
 

Sympy [F]

\[ \int \frac {x^2}{\left (a+b x^2\right )^{3/2} \sqrt {c+d x^2}} \, dx=\int \frac {x^{2}}{\left (a + b x^{2}\right )^{\frac {3}{2}} \sqrt {c + d x^{2}}}\, dx \] Input:

integrate(x**2/(b*x**2+a)**(3/2)/(d*x**2+c)**(1/2),x)
 

Output:

Integral(x**2/((a + b*x**2)**(3/2)*sqrt(c + d*x**2)), x)
 

Maxima [F]

\[ \int \frac {x^2}{\left (a+b x^2\right )^{3/2} \sqrt {c+d x^2}} \, dx=\int { \frac {x^{2}}{{\left (b x^{2} + a\right )}^{\frac {3}{2}} \sqrt {d x^{2} + c}} \,d x } \] Input:

integrate(x^2/(b*x^2+a)^(3/2)/(d*x^2+c)^(1/2),x, algorithm="maxima")
 

Output:

integrate(x^2/((b*x^2 + a)^(3/2)*sqrt(d*x^2 + c)), x)
 

Giac [F]

\[ \int \frac {x^2}{\left (a+b x^2\right )^{3/2} \sqrt {c+d x^2}} \, dx=\int { \frac {x^{2}}{{\left (b x^{2} + a\right )}^{\frac {3}{2}} \sqrt {d x^{2} + c}} \,d x } \] Input:

integrate(x^2/(b*x^2+a)^(3/2)/(d*x^2+c)^(1/2),x, algorithm="giac")
 

Output:

integrate(x^2/((b*x^2 + a)^(3/2)*sqrt(d*x^2 + c)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {x^2}{\left (a+b x^2\right )^{3/2} \sqrt {c+d x^2}} \, dx=\int \frac {x^2}{{\left (b\,x^2+a\right )}^{3/2}\,\sqrt {d\,x^2+c}} \,d x \] Input:

int(x^2/((a + b*x^2)^(3/2)*(c + d*x^2)^(1/2)),x)
 

Output:

int(x^2/((a + b*x^2)^(3/2)*(c + d*x^2)^(1/2)), x)
 

Reduce [F]

\[ \int \frac {x^2}{\left (a+b x^2\right )^{3/2} \sqrt {c+d x^2}} \, dx=\int \frac {\sqrt {d \,x^{2}+c}\, \sqrt {b \,x^{2}+a}\, x^{2}}{b^{2} d \,x^{6}+2 a b d \,x^{4}+b^{2} c \,x^{4}+a^{2} d \,x^{2}+2 a b c \,x^{2}+a^{2} c}d x \] Input:

int(x^2/(b*x^2+a)^(3/2)/(d*x^2+c)^(1/2),x)
 

Output:

int((sqrt(c + d*x**2)*sqrt(a + b*x**2)*x**2)/(a**2*c + a**2*d*x**2 + 2*a*b 
*c*x**2 + 2*a*b*d*x**4 + b**2*c*x**4 + b**2*d*x**6),x)