\(\int \frac {x^2}{\sqrt [3]{1-x^2} (3+x^2)^2} \, dx\) [1419]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (warning: unable to verify)
Maple [F]
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 22, antiderivative size = 543 \[ \int \frac {x^2}{\sqrt [3]{1-x^2} \left (3+x^2\right )^2} \, dx=-\frac {x \left (1-x^2\right )^{2/3}}{8 \left (3+x^2\right )}+\frac {x}{8 \left (1-\sqrt {3}-\sqrt [3]{1-x^2}\right )}+\frac {\arctan \left (\frac {\sqrt {3}}{x}\right )}{8\ 2^{2/3} \sqrt {3}}+\frac {\arctan \left (\frac {\sqrt {3} \left (1-\sqrt [3]{2} \sqrt [3]{1-x^2}\right )}{x}\right )}{8\ 2^{2/3} \sqrt {3}}-\frac {\text {arctanh}(x)}{24\ 2^{2/3}}+\frac {\text {arctanh}\left (\frac {x}{1+\sqrt [3]{2} \sqrt [3]{1-x^2}}\right )}{8\ 2^{2/3}}+\frac {\sqrt [4]{3} \sqrt {2+\sqrt {3}} \left (1-\sqrt [3]{1-x^2}\right ) \sqrt {\frac {1+\sqrt [3]{1-x^2}+\left (1-x^2\right )^{2/3}}{\left (1-\sqrt {3}-\sqrt [3]{1-x^2}\right )^2}} E\left (\arcsin \left (\frac {1+\sqrt {3}-\sqrt [3]{1-x^2}}{1-\sqrt {3}-\sqrt [3]{1-x^2}}\right )|-7+4 \sqrt {3}\right )}{16 x \sqrt {-\frac {1-\sqrt [3]{1-x^2}}{\left (1-\sqrt {3}-\sqrt [3]{1-x^2}\right )^2}}}-\frac {\left (1-\sqrt [3]{1-x^2}\right ) \sqrt {\frac {1+\sqrt [3]{1-x^2}+\left (1-x^2\right )^{2/3}}{\left (1-\sqrt {3}-\sqrt [3]{1-x^2}\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {1+\sqrt {3}-\sqrt [3]{1-x^2}}{1-\sqrt {3}-\sqrt [3]{1-x^2}}\right ),-7+4 \sqrt {3}\right )}{4 \sqrt {2} \sqrt [4]{3} x \sqrt {-\frac {1-\sqrt [3]{1-x^2}}{\left (1-\sqrt {3}-\sqrt [3]{1-x^2}\right )^2}}} \] Output:

-1/8*x*(-x^2+1)^(2/3)/(x^2+3)+x/(8-8*3^(1/2)-8*(-x^2+1)^(1/3))+1/48*arctan 
(3^(1/2)/x)*2^(1/3)*3^(1/2)+1/48*arctan((1-2^(1/3)*(-x^2+1)^(1/3))*3^(1/2) 
/x)*2^(1/3)*3^(1/2)-1/48*arctanh(x)*2^(1/3)+1/16*arctanh(x/(1+2^(1/3)*(-x^ 
2+1)^(1/3)))*2^(1/3)+1/16*3^(1/4)*(1/2*6^(1/2)+1/2*2^(1/2))*(1-(-x^2+1)^(1 
/3))*((1+(-x^2+1)^(1/3)+(-x^2+1)^(2/3))/(1-3^(1/2)-(-x^2+1)^(1/3))^2)^(1/2 
)*EllipticE((1+3^(1/2)-(-x^2+1)^(1/3))/(1-3^(1/2)-(-x^2+1)^(1/3)),2*I-I*3^ 
(1/2))/x/(-(1-(-x^2+1)^(1/3))/(1-3^(1/2)-(-x^2+1)^(1/3))^2)^(1/2)-1/24*2^( 
1/2)*3^(3/4)*(1-(-x^2+1)^(1/3))*((1+(-x^2+1)^(1/3)+(-x^2+1)^(2/3))/(1-3^(1 
/2)-(-x^2+1)^(1/3))^2)^(1/2)*EllipticF((1+3^(1/2)-(-x^2+1)^(1/3))/(1-3^(1/ 
2)-(-x^2+1)^(1/3)),2*I-I*3^(1/2))/x/(-(1-(-x^2+1)^(1/3))/(1-3^(1/2)-(-x^2+ 
1)^(1/3))^2)^(1/2)
                                                                                    
                                                                                    
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 6 vs. order 4 in optimal.

Time = 4.63 (sec) , antiderivative size = 156, normalized size of antiderivative = 0.29 \[ \int \frac {x^2}{\sqrt [3]{1-x^2} \left (3+x^2\right )^2} \, dx=-\frac {1}{216} x^3 \operatorname {AppellF1}\left (\frac {3}{2},\frac {1}{3},1,\frac {5}{2},x^2,-\frac {x^2}{3}\right )+\frac {x \left (-1+x^2+\frac {9 \operatorname {AppellF1}\left (\frac {1}{2},\frac {1}{3},1,\frac {3}{2},x^2,-\frac {x^2}{3}\right )}{9 \operatorname {AppellF1}\left (\frac {1}{2},\frac {1}{3},1,\frac {3}{2},x^2,-\frac {x^2}{3}\right )+2 x^2 \left (-\operatorname {AppellF1}\left (\frac {3}{2},\frac {1}{3},2,\frac {5}{2},x^2,-\frac {x^2}{3}\right )+\operatorname {AppellF1}\left (\frac {3}{2},\frac {4}{3},1,\frac {5}{2},x^2,-\frac {x^2}{3}\right )\right )}\right )}{8 \sqrt [3]{1-x^2} \left (3+x^2\right )} \] Input:

Integrate[x^2/((1 - x^2)^(1/3)*(3 + x^2)^2),x]
 

Output:

-1/216*(x^3*AppellF1[3/2, 1/3, 1, 5/2, x^2, -1/3*x^2]) + (x*(-1 + x^2 + (9 
*AppellF1[1/2, 1/3, 1, 3/2, x^2, -1/3*x^2])/(9*AppellF1[1/2, 1/3, 1, 3/2, 
x^2, -1/3*x^2] + 2*x^2*(-AppellF1[3/2, 1/3, 2, 5/2, x^2, -1/3*x^2] + Appel 
lF1[3/2, 4/3, 1, 5/2, x^2, -1/3*x^2]))))/(8*(1 - x^2)^(1/3)*(3 + x^2))
 

Rubi [A] (warning: unable to verify)

Time = 0.51 (sec) , antiderivative size = 596, normalized size of antiderivative = 1.10, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.364, Rules used = {373, 27, 405, 233, 305, 833, 760, 2418}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^2}{\sqrt [3]{1-x^2} \left (x^2+3\right )^2} \, dx\)

\(\Big \downarrow \) 373

\(\displaystyle \frac {1}{8} \int \frac {3-x^2}{3 \sqrt [3]{1-x^2} \left (x^2+3\right )}dx-\frac {x \left (1-x^2\right )^{2/3}}{8 \left (x^2+3\right )}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{24} \int \frac {3-x^2}{\sqrt [3]{1-x^2} \left (x^2+3\right )}dx-\frac {x \left (1-x^2\right )^{2/3}}{8 \left (x^2+3\right )}\)

\(\Big \downarrow \) 405

\(\displaystyle \frac {1}{24} \left (6 \int \frac {1}{\sqrt [3]{1-x^2} \left (x^2+3\right )}dx-\int \frac {1}{\sqrt [3]{1-x^2}}dx\right )-\frac {x \left (1-x^2\right )^{2/3}}{8 \left (x^2+3\right )}\)

\(\Big \downarrow \) 233

\(\displaystyle \frac {1}{24} \left (\frac {3 \sqrt {-x^2} \int \frac {\sqrt [3]{1-x^2}}{\sqrt {-x^2}}d\sqrt [3]{1-x^2}}{2 x}+6 \int \frac {1}{\sqrt [3]{1-x^2} \left (x^2+3\right )}dx\right )-\frac {x \left (1-x^2\right )^{2/3}}{8 \left (x^2+3\right )}\)

\(\Big \downarrow \) 305

\(\displaystyle \frac {1}{24} \left (\frac {3 \sqrt {-x^2} \int \frac {\sqrt [3]{1-x^2}}{\sqrt {-x^2}}d\sqrt [3]{1-x^2}}{2 x}+6 \left (\frac {\arctan \left (\frac {\sqrt {3} \left (1-\sqrt [3]{2} \sqrt [3]{1-x^2}\right )}{x}\right )}{2\ 2^{2/3} \sqrt {3}}+\frac {\arctan \left (\frac {\sqrt {3}}{x}\right )}{2\ 2^{2/3} \sqrt {3}}+\frac {\text {arctanh}\left (\frac {x}{\sqrt [3]{2} \sqrt [3]{1-x^2}+1}\right )}{2\ 2^{2/3}}-\frac {\text {arctanh}(x)}{6\ 2^{2/3}}\right )\right )-\frac {x \left (1-x^2\right )^{2/3}}{8 \left (x^2+3\right )}\)

\(\Big \downarrow \) 833

\(\displaystyle \frac {1}{24} \left (\frac {3 \sqrt {-x^2} \left (\left (1+\sqrt {3}\right ) \int \frac {1}{\sqrt {-x^2}}d\sqrt [3]{1-x^2}-\int \frac {-\sqrt [3]{1-x^2}+\sqrt {3}+1}{\sqrt {-x^2}}d\sqrt [3]{1-x^2}\right )}{2 x}+6 \left (\frac {\arctan \left (\frac {\sqrt {3} \left (1-\sqrt [3]{2} \sqrt [3]{1-x^2}\right )}{x}\right )}{2\ 2^{2/3} \sqrt {3}}+\frac {\arctan \left (\frac {\sqrt {3}}{x}\right )}{2\ 2^{2/3} \sqrt {3}}+\frac {\text {arctanh}\left (\frac {x}{\sqrt [3]{2} \sqrt [3]{1-x^2}+1}\right )}{2\ 2^{2/3}}-\frac {\text {arctanh}(x)}{6\ 2^{2/3}}\right )\right )-\frac {x \left (1-x^2\right )^{2/3}}{8 \left (x^2+3\right )}\)

\(\Big \downarrow \) 760

\(\displaystyle \frac {1}{24} \left (\frac {3 \sqrt {-x^2} \left (-\int \frac {-\sqrt [3]{1-x^2}+\sqrt {3}+1}{\sqrt {-x^2}}d\sqrt [3]{1-x^2}-\frac {2 \sqrt {2-\sqrt {3}} \left (1+\sqrt {3}\right ) \left (1-\sqrt [3]{1-x^2}\right ) \sqrt {\frac {\left (1-x^2\right )^{2/3}+\sqrt [3]{1-x^2}+1}{\left (-\sqrt [3]{1-x^2}-\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {-\sqrt [3]{1-x^2}+\sqrt {3}+1}{-\sqrt [3]{1-x^2}-\sqrt {3}+1}\right ),-7+4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {-x^2} \sqrt {-\frac {1-\sqrt [3]{1-x^2}}{\left (-\sqrt [3]{1-x^2}-\sqrt {3}+1\right )^2}}}\right )}{2 x}+6 \left (\frac {\arctan \left (\frac {\sqrt {3} \left (1-\sqrt [3]{2} \sqrt [3]{1-x^2}\right )}{x}\right )}{2\ 2^{2/3} \sqrt {3}}+\frac {\arctan \left (\frac {\sqrt {3}}{x}\right )}{2\ 2^{2/3} \sqrt {3}}+\frac {\text {arctanh}\left (\frac {x}{\sqrt [3]{2} \sqrt [3]{1-x^2}+1}\right )}{2\ 2^{2/3}}-\frac {\text {arctanh}(x)}{6\ 2^{2/3}}\right )\right )-\frac {x \left (1-x^2\right )^{2/3}}{8 \left (x^2+3\right )}\)

\(\Big \downarrow \) 2418

\(\displaystyle \frac {1}{24} \left (\frac {3 \sqrt {-x^2} \left (-\frac {2 \sqrt {2-\sqrt {3}} \left (1+\sqrt {3}\right ) \left (1-\sqrt [3]{1-x^2}\right ) \sqrt {\frac {\left (1-x^2\right )^{2/3}+\sqrt [3]{1-x^2}+1}{\left (-\sqrt [3]{1-x^2}-\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {-\sqrt [3]{1-x^2}+\sqrt {3}+1}{-\sqrt [3]{1-x^2}-\sqrt {3}+1}\right ),-7+4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {-x^2} \sqrt {-\frac {1-\sqrt [3]{1-x^2}}{\left (-\sqrt [3]{1-x^2}-\sqrt {3}+1\right )^2}}}+\frac {\sqrt [4]{3} \sqrt {2+\sqrt {3}} \left (1-\sqrt [3]{1-x^2}\right ) \sqrt {\frac {\left (1-x^2\right )^{2/3}+\sqrt [3]{1-x^2}+1}{\left (-\sqrt [3]{1-x^2}-\sqrt {3}+1\right )^2}} E\left (\arcsin \left (\frac {-\sqrt [3]{1-x^2}+\sqrt {3}+1}{-\sqrt [3]{1-x^2}-\sqrt {3}+1}\right )|-7+4 \sqrt {3}\right )}{\sqrt {-x^2} \sqrt {-\frac {1-\sqrt [3]{1-x^2}}{\left (-\sqrt [3]{1-x^2}-\sqrt {3}+1\right )^2}}}-\frac {2 \sqrt {-x^2}}{-\sqrt [3]{1-x^2}-\sqrt {3}+1}\right )}{2 x}+6 \left (\frac {\arctan \left (\frac {\sqrt {3} \left (1-\sqrt [3]{2} \sqrt [3]{1-x^2}\right )}{x}\right )}{2\ 2^{2/3} \sqrt {3}}+\frac {\arctan \left (\frac {\sqrt {3}}{x}\right )}{2\ 2^{2/3} \sqrt {3}}+\frac {\text {arctanh}\left (\frac {x}{\sqrt [3]{2} \sqrt [3]{1-x^2}+1}\right )}{2\ 2^{2/3}}-\frac {\text {arctanh}(x)}{6\ 2^{2/3}}\right )\right )-\frac {x \left (1-x^2\right )^{2/3}}{8 \left (x^2+3\right )}\)

Input:

Int[x^2/((1 - x^2)^(1/3)*(3 + x^2)^2),x]
 

Output:

-1/8*(x*(1 - x^2)^(2/3))/(3 + x^2) + (6*(ArcTan[Sqrt[3]/x]/(2*2^(2/3)*Sqrt 
[3]) + ArcTan[(Sqrt[3]*(1 - 2^(1/3)*(1 - x^2)^(1/3)))/x]/(2*2^(2/3)*Sqrt[3 
]) - ArcTanh[x]/(6*2^(2/3)) + ArcTanh[x/(1 + 2^(1/3)*(1 - x^2)^(1/3))]/(2* 
2^(2/3))) + (3*Sqrt[-x^2]*((-2*Sqrt[-x^2])/(1 - Sqrt[3] - (1 - x^2)^(1/3)) 
 + (3^(1/4)*Sqrt[2 + Sqrt[3]]*(1 - (1 - x^2)^(1/3))*Sqrt[(1 + (1 - x^2)^(1 
/3) + (1 - x^2)^(2/3))/(1 - Sqrt[3] - (1 - x^2)^(1/3))^2]*EllipticE[ArcSin 
[(1 + Sqrt[3] - (1 - x^2)^(1/3))/(1 - Sqrt[3] - (1 - x^2)^(1/3))], -7 + 4* 
Sqrt[3]])/(Sqrt[-x^2]*Sqrt[-((1 - (1 - x^2)^(1/3))/(1 - Sqrt[3] - (1 - x^2 
)^(1/3))^2)]) - (2*Sqrt[2 - Sqrt[3]]*(1 + Sqrt[3])*(1 - (1 - x^2)^(1/3))*S 
qrt[(1 + (1 - x^2)^(1/3) + (1 - x^2)^(2/3))/(1 - Sqrt[3] - (1 - x^2)^(1/3) 
)^2]*EllipticF[ArcSin[(1 + Sqrt[3] - (1 - x^2)^(1/3))/(1 - Sqrt[3] - (1 - 
x^2)^(1/3))], -7 + 4*Sqrt[3]])/(3^(1/4)*Sqrt[-x^2]*Sqrt[-((1 - (1 - x^2)^( 
1/3))/(1 - Sqrt[3] - (1 - x^2)^(1/3))^2)])))/(2*x))/24
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 233
Int[((a_) + (b_.)*(x_)^2)^(-1/3), x_Symbol] :> Simp[3*(Sqrt[b*x^2]/(2*b*x)) 
   Subst[Int[x/Sqrt[-a + x^3], x], x, (a + b*x^2)^(1/3)], x] /; FreeQ[{a, b 
}, x]
 

rule 305
Int[1/(((a_) + (b_.)*(x_)^2)^(1/3)*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Wit 
h[{q = Rt[-b/a, 2]}, Simp[q*(ArcTan[Sqrt[3]/(q*x)]/(2*2^(2/3)*Sqrt[3]*a^(1/ 
3)*d)), x] + (Simp[q*(ArcTanh[(a^(1/3)*q*x)/(a^(1/3) + 2^(1/3)*(a + b*x^2)^ 
(1/3))]/(2*2^(2/3)*a^(1/3)*d)), x] - Simp[q*(ArcTanh[q*x]/(6*2^(2/3)*a^(1/3 
)*d)), x] + Simp[q*(ArcTan[Sqrt[3]*((a^(1/3) - 2^(1/3)*(a + b*x^2)^(1/3))/( 
a^(1/3)*q*x))]/(2*2^(2/3)*Sqrt[3]*a^(1/3)*d)), x])] /; FreeQ[{a, b, c, d}, 
x] && NeQ[b*c - a*d, 0] && EqQ[b*c + 3*a*d, 0] && NegQ[b/a]
 

rule 373
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_ 
), x_Symbol] :> Simp[e*(e*x)^(m - 1)*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q + 
1)/(2*(b*c - a*d)*(p + 1))), x] - Simp[e^2/(2*(b*c - a*d)*(p + 1))   Int[(e 
*x)^(m - 2)*(a + b*x^2)^(p + 1)*(c + d*x^2)^q*Simp[c*(m - 1) + d*(m + 2*p + 
 2*q + 3)*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, q}, x] && NeQ[b*c - a*d, 
 0] && LtQ[p, -1] && GtQ[m, 1] && LeQ[m, 3] && IntBinomialQ[a, b, c, d, e, 
m, 2, p, q, x]
 

rule 405
Int[(((a_) + (b_.)*(x_)^2)^(p_)*((e_) + (f_.)*(x_)^2))/((c_) + (d_.)*(x_)^2 
), x_Symbol] :> Simp[f/d   Int[(a + b*x^2)^p, x], x] + Simp[(d*e - c*f)/d 
 Int[(a + b*x^2)^p/(c + d*x^2), x], x] /; FreeQ[{a, b, c, d, e, f, p}, x]
 

rule 760
Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], 
s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt[2 - Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s 
*x + r^2*x^2)/((1 - Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[(- 
s)*((s + r*x)/((1 - Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 + Sqrt[3]) 
*s + r*x)/((1 - Sqrt[3])*s + r*x)], -7 + 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x 
] && NegQ[a]
 

rule 833
Int[(x_)/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3] 
], s = Denom[Rt[b/a, 3]]}, Simp[(-(1 + Sqrt[3]))*(s/r)   Int[1/Sqrt[a + b*x 
^3], x], x] + Simp[1/r   Int[((1 + Sqrt[3])*s + r*x)/Sqrt[a + b*x^3], x], x 
]] /; FreeQ[{a, b}, x] && NegQ[a]
 

rule 2418
Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = N 
umer[Simplify[(1 + Sqrt[3])*(d/c)]], s = Denom[Simplify[(1 + Sqrt[3])*(d/c) 
]]}, Simp[2*d*s^3*(Sqrt[a + b*x^3]/(a*r^2*((1 - Sqrt[3])*s + r*x))), x] + S 
imp[3^(1/4)*Sqrt[2 + Sqrt[3]]*d*s*(s + r*x)*(Sqrt[(s^2 - r*s*x + r^2*x^2)/( 
(1 - Sqrt[3])*s + r*x)^2]/(r^2*Sqrt[a + b*x^3]*Sqrt[(-s)*((s + r*x)/((1 - S 
qrt[3])*s + r*x)^2)]))*EllipticE[ArcSin[((1 + Sqrt[3])*s + r*x)/((1 - Sqrt[ 
3])*s + r*x)], -7 + 4*Sqrt[3]], x]] /; FreeQ[{a, b, c, d}, x] && NegQ[a] && 
 EqQ[b*c^3 - 2*(5 + 3*Sqrt[3])*a*d^3, 0]
 
Maple [F]

\[\int \frac {x^{2}}{\left (-x^{2}+1\right )^{\frac {1}{3}} \left (x^{2}+3\right )^{2}}d x\]

Input:

int(x^2/(-x^2+1)^(1/3)/(x^2+3)^2,x)
 

Output:

int(x^2/(-x^2+1)^(1/3)/(x^2+3)^2,x)
 

Fricas [F]

\[ \int \frac {x^2}{\sqrt [3]{1-x^2} \left (3+x^2\right )^2} \, dx=\int { \frac {x^{2}}{{\left (x^{2} + 3\right )}^{2} {\left (-x^{2} + 1\right )}^{\frac {1}{3}}} \,d x } \] Input:

integrate(x^2/(-x^2+1)^(1/3)/(x^2+3)^2,x, algorithm="fricas")
 

Output:

integral(-(-x^2 + 1)^(2/3)*x^2/(x^6 + 5*x^4 + 3*x^2 - 9), x)
 

Sympy [F]

\[ \int \frac {x^2}{\sqrt [3]{1-x^2} \left (3+x^2\right )^2} \, dx=\int \frac {x^{2}}{\sqrt [3]{- \left (x - 1\right ) \left (x + 1\right )} \left (x^{2} + 3\right )^{2}}\, dx \] Input:

integrate(x**2/(-x**2+1)**(1/3)/(x**2+3)**2,x)
 

Output:

Integral(x**2/((-(x - 1)*(x + 1))**(1/3)*(x**2 + 3)**2), x)
 

Maxima [F]

\[ \int \frac {x^2}{\sqrt [3]{1-x^2} \left (3+x^2\right )^2} \, dx=\int { \frac {x^{2}}{{\left (x^{2} + 3\right )}^{2} {\left (-x^{2} + 1\right )}^{\frac {1}{3}}} \,d x } \] Input:

integrate(x^2/(-x^2+1)^(1/3)/(x^2+3)^2,x, algorithm="maxima")
 

Output:

integrate(x^2/((x^2 + 3)^2*(-x^2 + 1)^(1/3)), x)
                                                                                    
                                                                                    
 

Giac [F]

\[ \int \frac {x^2}{\sqrt [3]{1-x^2} \left (3+x^2\right )^2} \, dx=\int { \frac {x^{2}}{{\left (x^{2} + 3\right )}^{2} {\left (-x^{2} + 1\right )}^{\frac {1}{3}}} \,d x } \] Input:

integrate(x^2/(-x^2+1)^(1/3)/(x^2+3)^2,x, algorithm="giac")
 

Output:

integrate(x^2/((x^2 + 3)^2*(-x^2 + 1)^(1/3)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {x^2}{\sqrt [3]{1-x^2} \left (3+x^2\right )^2} \, dx=\int \frac {x^2}{{\left (1-x^2\right )}^{1/3}\,{\left (x^2+3\right )}^2} \,d x \] Input:

int(x^2/((1 - x^2)^(1/3)*(x^2 + 3)^2),x)
 

Output:

int(x^2/((1 - x^2)^(1/3)*(x^2 + 3)^2), x)
 

Reduce [F]

\[ \int \frac {x^2}{\sqrt [3]{1-x^2} \left (3+x^2\right )^2} \, dx=\int \frac {x^{2}}{\left (-x^{2}+1\right )^{\frac {1}{3}} x^{4}+6 \left (-x^{2}+1\right )^{\frac {1}{3}} x^{2}+9 \left (-x^{2}+1\right )^{\frac {1}{3}}}d x \] Input:

int(x^2/(-x^2+1)^(1/3)/(x^2+3)^2,x)
 

Output:

int(x**2/(( - x**2 + 1)**(1/3)*x**4 + 6*( - x**2 + 1)**(1/3)*x**2 + 9*( - 
x**2 + 1)**(1/3)),x)