\(\int \frac {x^8}{(1+x^2) (1+2 x^2)^{3/4}} \, dx\) [1471]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (warning: unable to verify)
Maple [F]
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 22, antiderivative size = 160 \[ \int \frac {x^8}{\left (1+x^2\right ) \left (1+2 x^2\right )^{3/4}} \, dx=\frac {125}{231} x \sqrt [4]{1+2 x^2}-\frac {16}{77} x^3 \sqrt [4]{1+2 x^2}+\frac {1}{11} x^5 \sqrt [4]{1+2 x^2}-\frac {\arctan \left (\frac {\sqrt {2} x \sqrt [4]{1+2 x^2}}{1+\sqrt {1+2 x^2}}\right )}{\sqrt {2}}-\frac {\text {arctanh}\left (\frac {1-\sqrt {1+2 x^2}}{\sqrt {2} x \sqrt [4]{1+2 x^2}}\right )}{\sqrt {2}}-\frac {125}{231} \sqrt {2} \operatorname {EllipticF}\left (\frac {1}{2} \arctan \left (\sqrt {2} x\right ),2\right ) \] Output:

125/231*x*(2*x^2+1)^(1/4)-16/77*x^3*(2*x^2+1)^(1/4)+1/11*x^5*(2*x^2+1)^(1/ 
4)-1/2*arctan(2^(1/2)*x*(2*x^2+1)^(1/4)/(1+(2*x^2+1)^(1/2)))*2^(1/2)-1/2*a 
rctanh(1/2*(1-(2*x^2+1)^(1/2))*2^(1/2)/x/(2*x^2+1)^(1/4))*2^(1/2)-125/231* 
2^(1/2)*InverseJacobiAM(1/2*arctan(x*2^(1/2)),2^(1/2))
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 6 vs. order 4 in optimal.

Time = 6.05 (sec) , antiderivative size = 169, normalized size of antiderivative = 1.06 \[ \int \frac {x^8}{\left (1+x^2\right ) \left (1+2 x^2\right )^{3/4}} \, dx=\frac {1}{693} x \left (-356 x^2 \operatorname {AppellF1}\left (\frac {3}{2},\frac {3}{4},1,\frac {5}{2},-2 x^2,-x^2\right )+\frac {3 \left (125+202 x^2-75 x^4+42 x^6+\frac {375 \operatorname {AppellF1}\left (\frac {1}{2},\frac {3}{4},1,\frac {3}{2},-2 x^2,-x^2\right )}{\left (1+x^2\right ) \left (-3 \operatorname {AppellF1}\left (\frac {1}{2},\frac {3}{4},1,\frac {3}{2},-2 x^2,-x^2\right )+x^2 \left (2 \operatorname {AppellF1}\left (\frac {3}{2},\frac {3}{4},2,\frac {5}{2},-2 x^2,-x^2\right )+3 \operatorname {AppellF1}\left (\frac {3}{2},\frac {7}{4},1,\frac {5}{2},-2 x^2,-x^2\right )\right )\right )}\right )}{\left (1+2 x^2\right )^{3/4}}\right ) \] Input:

Integrate[x^8/((1 + x^2)*(1 + 2*x^2)^(3/4)),x]
 

Output:

(x*(-356*x^2*AppellF1[3/2, 3/4, 1, 5/2, -2*x^2, -x^2] + (3*(125 + 202*x^2 
- 75*x^4 + 42*x^6 + (375*AppellF1[1/2, 3/4, 1, 3/2, -2*x^2, -x^2])/((1 + x 
^2)*(-3*AppellF1[1/2, 3/4, 1, 3/2, -2*x^2, -x^2] + x^2*(2*AppellF1[3/2, 3/ 
4, 2, 5/2, -2*x^2, -x^2] + 3*AppellF1[3/2, 7/4, 1, 5/2, -2*x^2, -x^2]))))) 
/(1 + 2*x^2)^(3/4)))/693
 

Rubi [A] (warning: unable to verify)

Time = 0.29 (sec) , antiderivative size = 159, normalized size of antiderivative = 0.99, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.091, Rules used = {352, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^8}{\left (x^2+1\right ) \left (2 x^2+1\right )^{3/4}} \, dx\)

\(\Big \downarrow \) 352

\(\displaystyle \int \left (\frac {x^2}{\left (2 x^2+1\right )^{3/4}}+\frac {1}{\left (x^2+1\right ) \left (2 x^2+1\right )^{3/4}}-\frac {1}{\left (2 x^2+1\right )^{3/4}}+\frac {x^6}{\left (2 x^2+1\right )^{3/4}}-\frac {x^4}{\left (2 x^2+1\right )^{3/4}}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\arctan \left (\frac {\sqrt {2 x^2+1}+1}{\sqrt {2} x \sqrt [4]{2 x^2+1}}\right )}{\sqrt {2}}-\frac {125}{231} \sqrt {2} \operatorname {EllipticF}\left (\frac {1}{2} \arctan \left (\sqrt {2} x\right ),2\right )-\frac {\text {arctanh}\left (\frac {1-\sqrt {2 x^2+1}}{\sqrt {2} x \sqrt [4]{2 x^2+1}}\right )}{\sqrt {2}}+\frac {125}{231} \sqrt [4]{2 x^2+1} x+\frac {1}{11} \sqrt [4]{2 x^2+1} x^5-\frac {16}{77} \sqrt [4]{2 x^2+1} x^3\)

Input:

Int[x^8/((1 + x^2)*(1 + 2*x^2)^(3/4)),x]
 

Output:

(125*x*(1 + 2*x^2)^(1/4))/231 - (16*x^3*(1 + 2*x^2)^(1/4))/77 + (x^5*(1 + 
2*x^2)^(1/4))/11 + ArcTan[(1 + Sqrt[1 + 2*x^2])/(Sqrt[2]*x*(1 + 2*x^2)^(1/ 
4))]/Sqrt[2] - ArcTanh[(1 - Sqrt[1 + 2*x^2])/(Sqrt[2]*x*(1 + 2*x^2)^(1/4)) 
]/Sqrt[2] - (125*Sqrt[2]*EllipticF[ArcTan[Sqrt[2]*x]/2, 2])/231
 

Defintions of rubi rules used

rule 352
Int[(x_)^(m_)/(((a_) + (b_.)*(x_)^2)^(3/4)*((c_) + (d_.)*(x_)^2)), x_Symbol 
] :> Int[ExpandIntegrand[x^m/((a + b*x^2)^(3/4)*(c + d*x^2)), x], x] /; Fre 
eQ[{a, b, c, d}, x] && EqQ[b*c - 2*a*d, 0] && IntegerQ[m] && (PosQ[a] || In 
tegerQ[m/2])
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 
Maple [F]

\[\int \frac {x^{8}}{\left (x^{2}+1\right ) \left (2 x^{2}+1\right )^{\frac {3}{4}}}d x\]

Input:

int(x^8/(x^2+1)/(2*x^2+1)^(3/4),x)
 

Output:

int(x^8/(x^2+1)/(2*x^2+1)^(3/4),x)
 

Fricas [F]

\[ \int \frac {x^8}{\left (1+x^2\right ) \left (1+2 x^2\right )^{3/4}} \, dx=\int { \frac {x^{8}}{{\left (2 \, x^{2} + 1\right )}^{\frac {3}{4}} {\left (x^{2} + 1\right )}} \,d x } \] Input:

integrate(x^8/(x^2+1)/(2*x^2+1)^(3/4),x, algorithm="fricas")
 

Output:

integral((2*x^2 + 1)^(1/4)*x^8/(2*x^4 + 3*x^2 + 1), x)
 

Sympy [F]

\[ \int \frac {x^8}{\left (1+x^2\right ) \left (1+2 x^2\right )^{3/4}} \, dx=\int \frac {x^{8}}{\left (x^{2} + 1\right ) \left (2 x^{2} + 1\right )^{\frac {3}{4}}}\, dx \] Input:

integrate(x**8/(x**2+1)/(2*x**2+1)**(3/4),x)
 

Output:

Integral(x**8/((x**2 + 1)*(2*x**2 + 1)**(3/4)), x)
 

Maxima [F]

\[ \int \frac {x^8}{\left (1+x^2\right ) \left (1+2 x^2\right )^{3/4}} \, dx=\int { \frac {x^{8}}{{\left (2 \, x^{2} + 1\right )}^{\frac {3}{4}} {\left (x^{2} + 1\right )}} \,d x } \] Input:

integrate(x^8/(x^2+1)/(2*x^2+1)^(3/4),x, algorithm="maxima")
 

Output:

integrate(x^8/((2*x^2 + 1)^(3/4)*(x^2 + 1)), x)
 

Giac [F]

\[ \int \frac {x^8}{\left (1+x^2\right ) \left (1+2 x^2\right )^{3/4}} \, dx=\int { \frac {x^{8}}{{\left (2 \, x^{2} + 1\right )}^{\frac {3}{4}} {\left (x^{2} + 1\right )}} \,d x } \] Input:

integrate(x^8/(x^2+1)/(2*x^2+1)^(3/4),x, algorithm="giac")
 

Output:

integrate(x^8/((2*x^2 + 1)^(3/4)*(x^2 + 1)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {x^8}{\left (1+x^2\right ) \left (1+2 x^2\right )^{3/4}} \, dx=\int \frac {x^8}{\left (x^2+1\right )\,{\left (2\,x^2+1\right )}^{3/4}} \,d x \] Input:

int(x^8/((x^2 + 1)*(2*x^2 + 1)^(3/4)),x)
 

Output:

int(x^8/((x^2 + 1)*(2*x^2 + 1)^(3/4)), x)
 

Reduce [F]

\[ \int \frac {x^8}{\left (1+x^2\right ) \left (1+2 x^2\right )^{3/4}} \, dx=\int \frac {x^{8}}{\left (2 x^{2}+1\right )^{\frac {3}{4}} x^{2}+\left (2 x^{2}+1\right )^{\frac {3}{4}}}d x \] Input:

int(x^8/(x^2+1)/(2*x^2+1)^(3/4),x)
 

Output:

int(x**8/((2*x**2 + 1)**(3/4)*x**2 + (2*x**2 + 1)**(3/4)),x)