\(\int \frac {A+B x^2}{x^{3/2} (a+b x^2)} \, dx\) [166]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [C] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [A] (verification not implemented)
Giac [B] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 22, antiderivative size = 171 \[ \int \frac {A+B x^2}{x^{3/2} \left (a+b x^2\right )} \, dx=-\frac {2 A}{a \sqrt {x}}+\frac {(A b-a B) \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} a^{5/4} b^{3/4}}-\frac {(A b-a B) \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} a^{5/4} b^{3/4}}+\frac {(A b-a B) \text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}}{\sqrt {a}+\sqrt {b} x}\right )}{\sqrt {2} a^{5/4} b^{3/4}} \] Output:

-2*A/a/x^(1/2)+1/2*(A*b-B*a)*arctan(1-2^(1/2)*b^(1/4)*x^(1/2)/a^(1/4))*2^( 
1/2)/a^(5/4)/b^(3/4)-1/2*(A*b-B*a)*arctan(1+2^(1/2)*b^(1/4)*x^(1/2)/a^(1/4 
))*2^(1/2)/a^(5/4)/b^(3/4)+1/2*(A*b-B*a)*arctanh(2^(1/2)*a^(1/4)*b^(1/4)*x 
^(1/2)/(a^(1/2)+b^(1/2)*x))*2^(1/2)/a^(5/4)/b^(3/4)
 

Mathematica [A] (verified)

Time = 0.19 (sec) , antiderivative size = 135, normalized size of antiderivative = 0.79 \[ \int \frac {A+B x^2}{x^{3/2} \left (a+b x^2\right )} \, dx=-\frac {2 A}{a \sqrt {x}}-\frac {(-A b+a B) \arctan \left (\frac {\sqrt {a}-\sqrt {b} x}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}}\right )}{\sqrt {2} a^{5/4} b^{3/4}}-\frac {(-A b+a B) \text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}}{\sqrt {a}+\sqrt {b} x}\right )}{\sqrt {2} a^{5/4} b^{3/4}} \] Input:

Integrate[(A + B*x^2)/(x^(3/2)*(a + b*x^2)),x]
 

Output:

(-2*A)/(a*Sqrt[x]) - ((-(A*b) + a*B)*ArcTan[(Sqrt[a] - Sqrt[b]*x)/(Sqrt[2] 
*a^(1/4)*b^(1/4)*Sqrt[x])])/(Sqrt[2]*a^(5/4)*b^(3/4)) - ((-(A*b) + a*B)*Ar 
cTanh[(Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x])/(Sqrt[a] + Sqrt[b]*x)])/(Sqrt[2]*a 
^(5/4)*b^(3/4))
 

Rubi [A] (verified)

Time = 0.41 (sec) , antiderivative size = 237, normalized size of antiderivative = 1.39, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.455, Rules used = {359, 266, 826, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+B x^2}{x^{3/2} \left (a+b x^2\right )} \, dx\)

\(\Big \downarrow \) 359

\(\displaystyle -\frac {(A b-a B) \int \frac {\sqrt {x}}{b x^2+a}dx}{a}-\frac {2 A}{a \sqrt {x}}\)

\(\Big \downarrow \) 266

\(\displaystyle -\frac {2 (A b-a B) \int \frac {x}{b x^2+a}d\sqrt {x}}{a}-\frac {2 A}{a \sqrt {x}}\)

\(\Big \downarrow \) 826

\(\displaystyle -\frac {2 (A b-a B) \left (\frac {\int \frac {\sqrt {b} x+\sqrt {a}}{b x^2+a}d\sqrt {x}}{2 \sqrt {b}}-\frac {\int \frac {\sqrt {a}-\sqrt {b} x}{b x^2+a}d\sqrt {x}}{2 \sqrt {b}}\right )}{a}-\frac {2 A}{a \sqrt {x}}\)

\(\Big \downarrow \) 1476

\(\displaystyle -\frac {2 (A b-a B) \left (\frac {\frac {\int \frac {1}{x-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}}d\sqrt {x}}{2 \sqrt {b}}+\frac {\int \frac {1}{x+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}}d\sqrt {x}}{2 \sqrt {b}}}{2 \sqrt {b}}-\frac {\int \frac {\sqrt {a}-\sqrt {b} x}{b x^2+a}d\sqrt {x}}{2 \sqrt {b}}\right )}{a}-\frac {2 A}{a \sqrt {x}}\)

\(\Big \downarrow \) 1082

\(\displaystyle -\frac {2 (A b-a B) \left (\frac {\frac {\int \frac {1}{-x-1}d\left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\int \frac {1}{-x-1}d\left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}-\frac {\int \frac {\sqrt {a}-\sqrt {b} x}{b x^2+a}d\sqrt {x}}{2 \sqrt {b}}\right )}{a}-\frac {2 A}{a \sqrt {x}}\)

\(\Big \downarrow \) 217

\(\displaystyle -\frac {2 (A b-a B) \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}-\frac {\int \frac {\sqrt {a}-\sqrt {b} x}{b x^2+a}d\sqrt {x}}{2 \sqrt {b}}\right )}{a}-\frac {2 A}{a \sqrt {x}}\)

\(\Big \downarrow \) 1479

\(\displaystyle -\frac {2 (A b-a B) \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}-\frac {-\frac {\int -\frac {\sqrt {2} \sqrt [4]{a}-2 \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{b} \left (x-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {2} \sqrt [4]{b} \sqrt {x}+\sqrt [4]{a}\right )}{\sqrt [4]{b} \left (x+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}\right )}{a}-\frac {2 A}{a \sqrt {x}}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {2 (A b-a B) \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}-\frac {\frac {\int \frac {\sqrt {2} \sqrt [4]{a}-2 \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{b} \left (x-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {2} \sqrt [4]{b} \sqrt {x}+\sqrt [4]{a}\right )}{\sqrt [4]{b} \left (x+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}\right )}{a}-\frac {2 A}{a \sqrt {x}}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {2 (A b-a B) \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}-\frac {\frac {\int \frac {\sqrt {2} \sqrt [4]{a}-2 \sqrt [4]{b} \sqrt {x}}{x-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt {b}}+\frac {\int \frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}+\sqrt [4]{a}}{x+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}}d\sqrt {x}}{2 \sqrt [4]{a} \sqrt {b}}}{2 \sqrt {b}}\right )}{a}-\frac {2 A}{a \sqrt {x}}\)

\(\Big \downarrow \) 1103

\(\displaystyle -\frac {2 (A b-a B) \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}-\frac {\frac {\log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {a}+\sqrt {b} x\right )}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {a}+\sqrt {b} x\right )}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}\right )}{a}-\frac {2 A}{a \sqrt {x}}\)

Input:

Int[(A + B*x^2)/(x^(3/2)*(a + b*x^2)),x]
 

Output:

(-2*A)/(a*Sqrt[x]) - (2*(A*b - a*B)*((-(ArcTan[1 - (Sqrt[2]*b^(1/4)*Sqrt[x 
])/a^(1/4)]/(Sqrt[2]*a^(1/4)*b^(1/4))) + ArcTan[1 + (Sqrt[2]*b^(1/4)*Sqrt[ 
x])/a^(1/4)]/(Sqrt[2]*a^(1/4)*b^(1/4)))/(2*Sqrt[b]) - (-1/2*Log[Sqrt[a] - 
Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x] + Sqrt[b]*x]/(Sqrt[2]*a^(1/4)*b^(1/4)) + L 
og[Sqrt[a] + Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x] + Sqrt[b]*x]/(2*Sqrt[2]*a^(1/ 
4)*b^(1/4)))/(2*Sqrt[b])))/a
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 359
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2), x 
_Symbol] :> Simp[c*(e*x)^(m + 1)*((a + b*x^2)^(p + 1)/(a*e*(m + 1))), x] + 
Simp[(a*d*(m + 1) - b*c*(m + 2*p + 3))/(a*e^2*(m + 1))   Int[(e*x)^(m + 2)* 
(a + b*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b*c - a*d, 0] 
&& LtQ[m, -1] &&  !ILtQ[p, -1]
 

rule 826
Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 
2]], s = Denominator[Rt[a/b, 2]]}, Simp[1/(2*s)   Int[(r + s*x^2)/(a + b*x^ 
4), x], x] - Simp[1/(2*s)   Int[(r - s*x^2)/(a + b*x^4), x], x]] /; FreeQ[{ 
a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] 
 && AtomQ[SplitProduct[SumBaseQ, b]]))
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 
Maple [A] (verified)

Time = 0.42 (sec) , antiderivative size = 127, normalized size of antiderivative = 0.74

method result size
derivativedivides \(-\frac {2 A}{a \sqrt {x}}-\frac {\left (A b -B a \right ) \sqrt {2}\, \left (\ln \left (\frac {x -\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}{x +\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}-1\right )\right )}{4 a b \left (\frac {a}{b}\right )^{\frac {1}{4}}}\) \(127\)
default \(-\frac {2 A}{a \sqrt {x}}-\frac {\left (A b -B a \right ) \sqrt {2}\, \left (\ln \left (\frac {x -\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}{x +\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}-1\right )\right )}{4 a b \left (\frac {a}{b}\right )^{\frac {1}{4}}}\) \(127\)
risch \(-\frac {2 A}{a \sqrt {x}}-\frac {\left (A b -B a \right ) \sqrt {2}\, \left (\ln \left (\frac {x -\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}{x +\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}-1\right )\right )}{4 a b \left (\frac {a}{b}\right )^{\frac {1}{4}}}\) \(127\)

Input:

int((B*x^2+A)/x^(3/2)/(b*x^2+a),x,method=_RETURNVERBOSE)
                                                                                    
                                                                                    
 

Output:

-2*A/a/x^(1/2)-1/4*(A*b-B*a)/a/b/(a/b)^(1/4)*2^(1/2)*(ln((x-(a/b)^(1/4)*x^ 
(1/2)*2^(1/2)+(a/b)^(1/2))/(x+(a/b)^(1/4)*x^(1/2)*2^(1/2)+(a/b)^(1/2)))+2* 
arctan(2^(1/2)/(a/b)^(1/4)*x^(1/2)+1)+2*arctan(2^(1/2)/(a/b)^(1/4)*x^(1/2) 
-1))
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.10 (sec) , antiderivative size = 705, normalized size of antiderivative = 4.12 \[ \int \frac {A+B x^2}{x^{3/2} \left (a+b x^2\right )} \, dx=-\frac {a x \left (-\frac {B^{4} a^{4} - 4 \, A B^{3} a^{3} b + 6 \, A^{2} B^{2} a^{2} b^{2} - 4 \, A^{3} B a b^{3} + A^{4} b^{4}}{a^{5} b^{3}}\right )^{\frac {1}{4}} \log \left (a^{4} b^{2} \left (-\frac {B^{4} a^{4} - 4 \, A B^{3} a^{3} b + 6 \, A^{2} B^{2} a^{2} b^{2} - 4 \, A^{3} B a b^{3} + A^{4} b^{4}}{a^{5} b^{3}}\right )^{\frac {3}{4}} - {\left (B^{3} a^{3} - 3 \, A B^{2} a^{2} b + 3 \, A^{2} B a b^{2} - A^{3} b^{3}\right )} \sqrt {x}\right ) - i \, a x \left (-\frac {B^{4} a^{4} - 4 \, A B^{3} a^{3} b + 6 \, A^{2} B^{2} a^{2} b^{2} - 4 \, A^{3} B a b^{3} + A^{4} b^{4}}{a^{5} b^{3}}\right )^{\frac {1}{4}} \log \left (i \, a^{4} b^{2} \left (-\frac {B^{4} a^{4} - 4 \, A B^{3} a^{3} b + 6 \, A^{2} B^{2} a^{2} b^{2} - 4 \, A^{3} B a b^{3} + A^{4} b^{4}}{a^{5} b^{3}}\right )^{\frac {3}{4}} - {\left (B^{3} a^{3} - 3 \, A B^{2} a^{2} b + 3 \, A^{2} B a b^{2} - A^{3} b^{3}\right )} \sqrt {x}\right ) + i \, a x \left (-\frac {B^{4} a^{4} - 4 \, A B^{3} a^{3} b + 6 \, A^{2} B^{2} a^{2} b^{2} - 4 \, A^{3} B a b^{3} + A^{4} b^{4}}{a^{5} b^{3}}\right )^{\frac {1}{4}} \log \left (-i \, a^{4} b^{2} \left (-\frac {B^{4} a^{4} - 4 \, A B^{3} a^{3} b + 6 \, A^{2} B^{2} a^{2} b^{2} - 4 \, A^{3} B a b^{3} + A^{4} b^{4}}{a^{5} b^{3}}\right )^{\frac {3}{4}} - {\left (B^{3} a^{3} - 3 \, A B^{2} a^{2} b + 3 \, A^{2} B a b^{2} - A^{3} b^{3}\right )} \sqrt {x}\right ) - a x \left (-\frac {B^{4} a^{4} - 4 \, A B^{3} a^{3} b + 6 \, A^{2} B^{2} a^{2} b^{2} - 4 \, A^{3} B a b^{3} + A^{4} b^{4}}{a^{5} b^{3}}\right )^{\frac {1}{4}} \log \left (-a^{4} b^{2} \left (-\frac {B^{4} a^{4} - 4 \, A B^{3} a^{3} b + 6 \, A^{2} B^{2} a^{2} b^{2} - 4 \, A^{3} B a b^{3} + A^{4} b^{4}}{a^{5} b^{3}}\right )^{\frac {3}{4}} - {\left (B^{3} a^{3} - 3 \, A B^{2} a^{2} b + 3 \, A^{2} B a b^{2} - A^{3} b^{3}\right )} \sqrt {x}\right ) + 4 \, A \sqrt {x}}{2 \, a x} \] Input:

integrate((B*x^2+A)/x^(3/2)/(b*x^2+a),x, algorithm="fricas")
 

Output:

-1/2*(a*x*(-(B^4*a^4 - 4*A*B^3*a^3*b + 6*A^2*B^2*a^2*b^2 - 4*A^3*B*a*b^3 + 
 A^4*b^4)/(a^5*b^3))^(1/4)*log(a^4*b^2*(-(B^4*a^4 - 4*A*B^3*a^3*b + 6*A^2* 
B^2*a^2*b^2 - 4*A^3*B*a*b^3 + A^4*b^4)/(a^5*b^3))^(3/4) - (B^3*a^3 - 3*A*B 
^2*a^2*b + 3*A^2*B*a*b^2 - A^3*b^3)*sqrt(x)) - I*a*x*(-(B^4*a^4 - 4*A*B^3* 
a^3*b + 6*A^2*B^2*a^2*b^2 - 4*A^3*B*a*b^3 + A^4*b^4)/(a^5*b^3))^(1/4)*log( 
I*a^4*b^2*(-(B^4*a^4 - 4*A*B^3*a^3*b + 6*A^2*B^2*a^2*b^2 - 4*A^3*B*a*b^3 + 
 A^4*b^4)/(a^5*b^3))^(3/4) - (B^3*a^3 - 3*A*B^2*a^2*b + 3*A^2*B*a*b^2 - A^ 
3*b^3)*sqrt(x)) + I*a*x*(-(B^4*a^4 - 4*A*B^3*a^3*b + 6*A^2*B^2*a^2*b^2 - 4 
*A^3*B*a*b^3 + A^4*b^4)/(a^5*b^3))^(1/4)*log(-I*a^4*b^2*(-(B^4*a^4 - 4*A*B 
^3*a^3*b + 6*A^2*B^2*a^2*b^2 - 4*A^3*B*a*b^3 + A^4*b^4)/(a^5*b^3))^(3/4) - 
 (B^3*a^3 - 3*A*B^2*a^2*b + 3*A^2*B*a*b^2 - A^3*b^3)*sqrt(x)) - a*x*(-(B^4 
*a^4 - 4*A*B^3*a^3*b + 6*A^2*B^2*a^2*b^2 - 4*A^3*B*a*b^3 + A^4*b^4)/(a^5*b 
^3))^(1/4)*log(-a^4*b^2*(-(B^4*a^4 - 4*A*B^3*a^3*b + 6*A^2*B^2*a^2*b^2 - 4 
*A^3*B*a*b^3 + A^4*b^4)/(a^5*b^3))^(3/4) - (B^3*a^3 - 3*A*B^2*a^2*b + 3*A^ 
2*B*a*b^2 - A^3*b^3)*sqrt(x)) + 4*A*sqrt(x))/(a*x)
 

Sympy [A] (verification not implemented)

Time = 13.21 (sec) , antiderivative size = 223, normalized size of antiderivative = 1.30 \[ \int \frac {A+B x^2}{x^{3/2} \left (a+b x^2\right )} \, dx=A \left (\begin {cases} \frac {\tilde {\infty }}{x^{\frac {5}{2}}} & \text {for}\: a = 0 \wedge b = 0 \\- \frac {2}{5 b x^{\frac {5}{2}}} & \text {for}\: a = 0 \\- \frac {2}{a \sqrt {x}} & \text {for}\: b = 0 \\- \frac {\log {\left (\sqrt {x} - \sqrt [4]{- \frac {a}{b}} \right )}}{2 a \sqrt [4]{- \frac {a}{b}}} + \frac {\log {\left (\sqrt {x} + \sqrt [4]{- \frac {a}{b}} \right )}}{2 a \sqrt [4]{- \frac {a}{b}}} - \frac {\operatorname {atan}{\left (\frac {\sqrt {x}}{\sqrt [4]{- \frac {a}{b}}} \right )}}{a \sqrt [4]{- \frac {a}{b}}} - \frac {2}{a \sqrt {x}} & \text {otherwise} \end {cases}\right ) + B \left (\begin {cases} \frac {\tilde {\infty }}{\sqrt {x}} & \text {for}\: a = 0 \wedge b = 0 \\\frac {2 x^{\frac {3}{2}}}{3 a} & \text {for}\: b = 0 \\- \frac {2}{b \sqrt {x}} & \text {for}\: a = 0 \\\frac {\log {\left (\sqrt {x} - \sqrt [4]{- \frac {a}{b}} \right )}}{2 b \sqrt [4]{- \frac {a}{b}}} - \frac {\log {\left (\sqrt {x} + \sqrt [4]{- \frac {a}{b}} \right )}}{2 b \sqrt [4]{- \frac {a}{b}}} + \frac {\operatorname {atan}{\left (\frac {\sqrt {x}}{\sqrt [4]{- \frac {a}{b}}} \right )}}{b \sqrt [4]{- \frac {a}{b}}} & \text {otherwise} \end {cases}\right ) \] Input:

integrate((B*x**2+A)/x**(3/2)/(b*x**2+a),x)
 

Output:

A*Piecewise((zoo/x**(5/2), Eq(a, 0) & Eq(b, 0)), (-2/(5*b*x**(5/2)), Eq(a, 
 0)), (-2/(a*sqrt(x)), Eq(b, 0)), (-log(sqrt(x) - (-a/b)**(1/4))/(2*a*(-a/ 
b)**(1/4)) + log(sqrt(x) + (-a/b)**(1/4))/(2*a*(-a/b)**(1/4)) - atan(sqrt( 
x)/(-a/b)**(1/4))/(a*(-a/b)**(1/4)) - 2/(a*sqrt(x)), True)) + B*Piecewise( 
(zoo/sqrt(x), Eq(a, 0) & Eq(b, 0)), (2*x**(3/2)/(3*a), Eq(b, 0)), (-2/(b*s 
qrt(x)), Eq(a, 0)), (log(sqrt(x) - (-a/b)**(1/4))/(2*b*(-a/b)**(1/4)) - lo 
g(sqrt(x) + (-a/b)**(1/4))/(2*b*(-a/b)**(1/4)) + atan(sqrt(x)/(-a/b)**(1/4 
))/(b*(-a/b)**(1/4)), True))
 

Maxima [A] (verification not implemented)

Time = 0.13 (sec) , antiderivative size = 194, normalized size of antiderivative = 1.13 \[ \int \frac {A+B x^2}{x^{3/2} \left (a+b x^2\right )} \, dx=\frac {{\left (B a - A b\right )} {\left (\frac {2 \, \sqrt {2} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} + 2 \, \sqrt {b} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b}}}\right )}{\sqrt {\sqrt {a} \sqrt {b}} \sqrt {b}} + \frac {2 \, \sqrt {2} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} - 2 \, \sqrt {b} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b}}}\right )}{\sqrt {\sqrt {a} \sqrt {b}} \sqrt {b}} - \frac {\sqrt {2} \log \left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {x} + \sqrt {b} x + \sqrt {a}\right )}{a^{\frac {1}{4}} b^{\frac {3}{4}}} + \frac {\sqrt {2} \log \left (-\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {x} + \sqrt {b} x + \sqrt {a}\right )}{a^{\frac {1}{4}} b^{\frac {3}{4}}}\right )}}{4 \, a} - \frac {2 \, A}{a \sqrt {x}} \] Input:

integrate((B*x^2+A)/x^(3/2)/(b*x^2+a),x, algorithm="maxima")
 

Output:

1/4*(B*a - A*b)*(2*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2)*a^(1/4)*b^(1/4) + 2 
*sqrt(b)*sqrt(x))/sqrt(sqrt(a)*sqrt(b)))/(sqrt(sqrt(a)*sqrt(b))*sqrt(b)) + 
 2*sqrt(2)*arctan(-1/2*sqrt(2)*(sqrt(2)*a^(1/4)*b^(1/4) - 2*sqrt(b)*sqrt(x 
))/sqrt(sqrt(a)*sqrt(b)))/(sqrt(sqrt(a)*sqrt(b))*sqrt(b)) - sqrt(2)*log(sq 
rt(2)*a^(1/4)*b^(1/4)*sqrt(x) + sqrt(b)*x + sqrt(a))/(a^(1/4)*b^(3/4)) + s 
qrt(2)*log(-sqrt(2)*a^(1/4)*b^(1/4)*sqrt(x) + sqrt(b)*x + sqrt(a))/(a^(1/4 
)*b^(3/4)))/a - 2*A/(a*sqrt(x))
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 251 vs. \(2 (125) = 250\).

Time = 0.13 (sec) , antiderivative size = 251, normalized size of antiderivative = 1.47 \[ \int \frac {A+B x^2}{x^{3/2} \left (a+b x^2\right )} \, dx=-\frac {2 \, A}{a \sqrt {x}} + \frac {\sqrt {2} {\left (\left (a b^{3}\right )^{\frac {3}{4}} B a - \left (a b^{3}\right )^{\frac {3}{4}} A b\right )} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {a}{b}\right )^{\frac {1}{4}} + 2 \, \sqrt {x}\right )}}{2 \, \left (\frac {a}{b}\right )^{\frac {1}{4}}}\right )}{2 \, a^{2} b^{3}} + \frac {\sqrt {2} {\left (\left (a b^{3}\right )^{\frac {3}{4}} B a - \left (a b^{3}\right )^{\frac {3}{4}} A b\right )} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {a}{b}\right )^{\frac {1}{4}} - 2 \, \sqrt {x}\right )}}{2 \, \left (\frac {a}{b}\right )^{\frac {1}{4}}}\right )}{2 \, a^{2} b^{3}} - \frac {\sqrt {2} {\left (\left (a b^{3}\right )^{\frac {3}{4}} B a - \left (a b^{3}\right )^{\frac {3}{4}} A b\right )} \log \left (\sqrt {2} \sqrt {x} \left (\frac {a}{b}\right )^{\frac {1}{4}} + x + \sqrt {\frac {a}{b}}\right )}{4 \, a^{2} b^{3}} + \frac {\sqrt {2} {\left (\left (a b^{3}\right )^{\frac {3}{4}} B a - \left (a b^{3}\right )^{\frac {3}{4}} A b\right )} \log \left (-\sqrt {2} \sqrt {x} \left (\frac {a}{b}\right )^{\frac {1}{4}} + x + \sqrt {\frac {a}{b}}\right )}{4 \, a^{2} b^{3}} \] Input:

integrate((B*x^2+A)/x^(3/2)/(b*x^2+a),x, algorithm="giac")
 

Output:

-2*A/(a*sqrt(x)) + 1/2*sqrt(2)*((a*b^3)^(3/4)*B*a - (a*b^3)^(3/4)*A*b)*arc 
tan(1/2*sqrt(2)*(sqrt(2)*(a/b)^(1/4) + 2*sqrt(x))/(a/b)^(1/4))/(a^2*b^3) + 
 1/2*sqrt(2)*((a*b^3)^(3/4)*B*a - (a*b^3)^(3/4)*A*b)*arctan(-1/2*sqrt(2)*( 
sqrt(2)*(a/b)^(1/4) - 2*sqrt(x))/(a/b)^(1/4))/(a^2*b^3) - 1/4*sqrt(2)*((a* 
b^3)^(3/4)*B*a - (a*b^3)^(3/4)*A*b)*log(sqrt(2)*sqrt(x)*(a/b)^(1/4) + x + 
sqrt(a/b))/(a^2*b^3) + 1/4*sqrt(2)*((a*b^3)^(3/4)*B*a - (a*b^3)^(3/4)*A*b) 
*log(-sqrt(2)*sqrt(x)*(a/b)^(1/4) + x + sqrt(a/b))/(a^2*b^3)
 

Mupad [B] (verification not implemented)

Time = 0.46 (sec) , antiderivative size = 71, normalized size of antiderivative = 0.42 \[ \int \frac {A+B x^2}{x^{3/2} \left (a+b x^2\right )} \, dx=\frac {\mathrm {atan}\left (\frac {b^{1/4}\,\sqrt {x}}{{\left (-a\right )}^{1/4}}\right )\,\left (A\,b-B\,a\right )}{{\left (-a\right )}^{5/4}\,b^{3/4}}-\frac {2\,A}{a\,\sqrt {x}}-\frac {\mathrm {atanh}\left (\frac {b^{1/4}\,\sqrt {x}}{{\left (-a\right )}^{1/4}}\right )\,\left (A\,b-B\,a\right )}{{\left (-a\right )}^{5/4}\,b^{3/4}} \] Input:

int((A + B*x^2)/(x^(3/2)*(a + b*x^2)),x)
 

Output:

(atan((b^(1/4)*x^(1/2))/(-a)^(1/4))*(A*b - B*a))/((-a)^(5/4)*b^(3/4)) - (2 
*A)/(a*x^(1/2)) - (atanh((b^(1/4)*x^(1/2))/(-a)^(1/4))*(A*b - B*a))/((-a)^ 
(5/4)*b^(3/4))
 

Reduce [B] (verification not implemented)

Time = 0.22 (sec) , antiderivative size = 6, normalized size of antiderivative = 0.04 \[ \int \frac {A+B x^2}{x^{3/2} \left (a+b x^2\right )} \, dx=-\frac {2}{\sqrt {x}} \] Input:

int((B*x^2+A)/x^(3/2)/(b*x^2+a),x)
 

Output:

( - 2)/sqrt(x)