\(\int \frac {c+d x^2}{\sqrt {e x} (a+b x^2)^{7/4}} \, dx\) [468]

Optimal result
Mathematica [C] (verified)
Rubi [A] (warning: unable to verify)
Maple [F]
Fricas [F]
Sympy [C] (verification not implemented)
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 26, antiderivative size = 116 \[ \int \frac {c+d x^2}{\sqrt {e x} \left (a+b x^2\right )^{7/4}} \, dx=\frac {2 (b c-a d) \sqrt {e x}}{3 a b e \left (a+b x^2\right )^{3/4}}-\frac {2 (2 b c+a d) \left (1+\frac {a}{b x^2}\right )^{3/4} (e x)^{3/2} \operatorname {EllipticF}\left (\frac {1}{2} \cot ^{-1}\left (\frac {\sqrt {b} x}{\sqrt {a}}\right ),2\right )}{3 a^{3/2} \sqrt {b} e^2 \left (a+b x^2\right )^{3/4}} \] Output:

2/3*(-a*d+b*c)*(e*x)^(1/2)/a/b/e/(b*x^2+a)^(3/4)-2/3*(a*d+2*b*c)*(1+a/b/x^ 
2)^(3/4)*(e*x)^(3/2)*InverseJacobiAM(1/2*arccot(b^(1/2)*x/a^(1/2)),2^(1/2) 
)/a^(3/2)/b^(1/2)/e^2/(b*x^2+a)^(3/4)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.05 (sec) , antiderivative size = 79, normalized size of antiderivative = 0.68 \[ \int \frac {c+d x^2}{\sqrt {e x} \left (a+b x^2\right )^{7/4}} \, dx=\frac {2 x \left (b c-a d+(2 b c+a d) \left (1+\frac {b x^2}{a}\right )^{3/4} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {3}{4},\frac {5}{4},-\frac {b x^2}{a}\right )\right )}{3 a b \sqrt {e x} \left (a+b x^2\right )^{3/4}} \] Input:

Integrate[(c + d*x^2)/(Sqrt[e*x]*(a + b*x^2)^(7/4)),x]
 

Output:

(2*x*(b*c - a*d + (2*b*c + a*d)*(1 + (b*x^2)/a)^(3/4)*Hypergeometric2F1[1/ 
4, 3/4, 5/4, -((b*x^2)/a)]))/(3*a*b*Sqrt[e*x]*(a + b*x^2)^(3/4))
 

Rubi [A] (warning: unable to verify)

Time = 0.29 (sec) , antiderivative size = 119, normalized size of antiderivative = 1.03, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.231, Rules used = {362, 266, 768, 858, 807, 229}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {c+d x^2}{\sqrt {e x} \left (a+b x^2\right )^{7/4}} \, dx\)

\(\Big \downarrow \) 362

\(\displaystyle \frac {(a d+2 b c) \int \frac {1}{\sqrt {e x} \left (b x^2+a\right )^{3/4}}dx}{3 a b}+\frac {2 \sqrt {e x} (b c-a d)}{3 a b e \left (a+b x^2\right )^{3/4}}\)

\(\Big \downarrow \) 266

\(\displaystyle \frac {2 (a d+2 b c) \int \frac {1}{\left (b x^2+a\right )^{3/4}}d\sqrt {e x}}{3 a b e}+\frac {2 \sqrt {e x} (b c-a d)}{3 a b e \left (a+b x^2\right )^{3/4}}\)

\(\Big \downarrow \) 768

\(\displaystyle \frac {2 (e x)^{3/2} \left (\frac {a}{b x^2}+1\right )^{3/4} (a d+2 b c) \int \frac {1}{\left (\frac {a}{b x^2}+1\right )^{3/4} (e x)^{3/2}}d\sqrt {e x}}{3 a b e \left (a+b x^2\right )^{3/4}}+\frac {2 \sqrt {e x} (b c-a d)}{3 a b e \left (a+b x^2\right )^{3/4}}\)

\(\Big \downarrow \) 858

\(\displaystyle \frac {2 \sqrt {e x} (b c-a d)}{3 a b e \left (a+b x^2\right )^{3/4}}-\frac {2 (e x)^{3/2} \left (\frac {a}{b x^2}+1\right )^{3/4} (a d+2 b c) \int \frac {1}{\sqrt {e x} \left (\frac {a x^2 e^4}{b}+1\right )^{3/4}}d\frac {1}{\sqrt {e x}}}{3 a b e \left (a+b x^2\right )^{3/4}}\)

\(\Big \downarrow \) 807

\(\displaystyle \frac {2 \sqrt {e x} (b c-a d)}{3 a b e \left (a+b x^2\right )^{3/4}}-\frac {(e x)^{3/2} \left (\frac {a}{b x^2}+1\right )^{3/4} (a d+2 b c) \int \frac {1}{\left (\frac {a x e^3}{b}+1\right )^{3/4}}d(e x)}{3 a b e \left (a+b x^2\right )^{3/4}}\)

\(\Big \downarrow \) 229

\(\displaystyle \frac {2 \sqrt {e x} (b c-a d)}{3 a b e \left (a+b x^2\right )^{3/4}}-\frac {2 (e x)^{3/2} \left (\frac {a}{b x^2}+1\right )^{3/4} (a d+2 b c) \operatorname {EllipticF}\left (\frac {1}{2} \arctan \left (\frac {\sqrt {a} e^2 x}{\sqrt {b}}\right ),2\right )}{3 a^{3/2} \sqrt {b} e^2 \left (a+b x^2\right )^{3/4}}\)

Input:

Int[(c + d*x^2)/(Sqrt[e*x]*(a + b*x^2)^(7/4)),x]
 

Output:

(2*(b*c - a*d)*Sqrt[e*x])/(3*a*b*e*(a + b*x^2)^(3/4)) - (2*(2*b*c + a*d)*( 
1 + a/(b*x^2))^(3/4)*(e*x)^(3/2)*EllipticF[ArcTan[(Sqrt[a]*e^2*x)/Sqrt[b]] 
/2, 2])/(3*a^(3/2)*Sqrt[b]*e^2*(a + b*x^2)^(3/4))
 

Defintions of rubi rules used

rule 229
Int[((a_) + (b_.)*(x_)^2)^(-3/4), x_Symbol] :> Simp[(2/(a^(3/4)*Rt[b/a, 2]) 
)*EllipticF[(1/2)*ArcTan[Rt[b/a, 2]*x], 2], x] /; FreeQ[{a, b}, x] && GtQ[a 
, 0] && PosQ[b/a]
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 362
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2), x 
_Symbol] :> Simp[(-(b*c - a*d))*(e*x)^(m + 1)*((a + b*x^2)^(p + 1)/(2*a*b*e 
*(p + 1))), x] - Simp[(a*d*(m + 1) - b*c*(m + 2*p + 3))/(2*a*b*(p + 1))   I 
nt[(e*x)^m*(a + b*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && N 
eQ[b*c - a*d, 0] && LtQ[p, -1] && (( !IntegerQ[p + 1/2] && NeQ[p, -5/4]) || 
  !RationalQ[m] || (ILtQ[p + 1/2, 0] && LeQ[-1, m, -2*(p + 1)]))
 

rule 768
Int[((a_) + (b_.)*(x_)^4)^(-3/4), x_Symbol] :> Simp[x^3*((1 + a/(b*x^4))^(3 
/4)/(a + b*x^4)^(3/4))   Int[1/(x^3*(1 + a/(b*x^4))^(3/4)), x], x] /; FreeQ 
[{a, b}, x]
 

rule 807
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = GCD[m 
+ 1, n]}, Simp[1/k   Subst[Int[x^((m + 1)/k - 1)*(a + b*x^(n/k))^p, x], x, 
x^k], x] /; k != 1] /; FreeQ[{a, b, p}, x] && IGtQ[n, 0] && IntegerQ[m]
 

rule 858
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Subst[Int[(a + 
b/x^n)^p/x^(m + 2), x], x, 1/x] /; FreeQ[{a, b, p}, x] && ILtQ[n, 0] && Int 
egerQ[m]
 
Maple [F]

\[\int \frac {x^{2} d +c}{\sqrt {e x}\, \left (b \,x^{2}+a \right )^{\frac {7}{4}}}d x\]

Input:

int((d*x^2+c)/(e*x)^(1/2)/(b*x^2+a)^(7/4),x)
 

Output:

int((d*x^2+c)/(e*x)^(1/2)/(b*x^2+a)^(7/4),x)
 

Fricas [F]

\[ \int \frac {c+d x^2}{\sqrt {e x} \left (a+b x^2\right )^{7/4}} \, dx=\int { \frac {d x^{2} + c}{{\left (b x^{2} + a\right )}^{\frac {7}{4}} \sqrt {e x}} \,d x } \] Input:

integrate((d*x^2+c)/(e*x)^(1/2)/(b*x^2+a)^(7/4),x, algorithm="fricas")
 

Output:

integral((b*x^2 + a)^(1/4)*(d*x^2 + c)*sqrt(e*x)/(b^2*e*x^5 + 2*a*b*e*x^3 
+ a^2*e*x), x)
 

Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 17.47 (sec) , antiderivative size = 78, normalized size of antiderivative = 0.67 \[ \int \frac {c+d x^2}{\sqrt {e x} \left (a+b x^2\right )^{7/4}} \, dx=- \frac {d {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, \frac {7}{4} \\ \frac {3}{2} \end {matrix}\middle | {\frac {a e^{i \pi }}{b x^{2}}} \right )}}{b^{\frac {7}{4}} \sqrt {e} x} + \frac {c \sqrt {x} \Gamma \left (\frac {1}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{4}, \frac {7}{4} \\ \frac {5}{4} \end {matrix}\middle | {\frac {b x^{2} e^{i \pi }}{a}} \right )}}{2 a^{\frac {7}{4}} \sqrt {e} \Gamma \left (\frac {5}{4}\right )} \] Input:

integrate((d*x**2+c)/(e*x)**(1/2)/(b*x**2+a)**(7/4),x)
 

Output:

-d*hyper((1/2, 7/4), (3/2,), a*exp_polar(I*pi)/(b*x**2))/(b**(7/4)*sqrt(e) 
*x) + c*sqrt(x)*gamma(1/4)*hyper((1/4, 7/4), (5/4,), b*x**2*exp_polar(I*pi 
)/a)/(2*a**(7/4)*sqrt(e)*gamma(5/4))
 

Maxima [F]

\[ \int \frac {c+d x^2}{\sqrt {e x} \left (a+b x^2\right )^{7/4}} \, dx=\int { \frac {d x^{2} + c}{{\left (b x^{2} + a\right )}^{\frac {7}{4}} \sqrt {e x}} \,d x } \] Input:

integrate((d*x^2+c)/(e*x)^(1/2)/(b*x^2+a)^(7/4),x, algorithm="maxima")
 

Output:

integrate((d*x^2 + c)/((b*x^2 + a)^(7/4)*sqrt(e*x)), x)
 

Giac [F]

\[ \int \frac {c+d x^2}{\sqrt {e x} \left (a+b x^2\right )^{7/4}} \, dx=\int { \frac {d x^{2} + c}{{\left (b x^{2} + a\right )}^{\frac {7}{4}} \sqrt {e x}} \,d x } \] Input:

integrate((d*x^2+c)/(e*x)^(1/2)/(b*x^2+a)^(7/4),x, algorithm="giac")
 

Output:

integrate((d*x^2 + c)/((b*x^2 + a)^(7/4)*sqrt(e*x)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {c+d x^2}{\sqrt {e x} \left (a+b x^2\right )^{7/4}} \, dx=\int \frac {d\,x^2+c}{\sqrt {e\,x}\,{\left (b\,x^2+a\right )}^{7/4}} \,d x \] Input:

int((c + d*x^2)/((e*x)^(1/2)*(a + b*x^2)^(7/4)),x)
 

Output:

int((c + d*x^2)/((e*x)^(1/2)*(a + b*x^2)^(7/4)), x)
 

Reduce [F]

\[ \int \frac {c+d x^2}{\sqrt {e x} \left (a+b x^2\right )^{7/4}} \, dx=\frac {\sqrt {e}\, \left (-2 \sqrt {x}\, \left (b \,x^{2}+a \right )^{\frac {1}{4}} d +2 \left (\int \frac {\sqrt {x}\, \left (b \,x^{2}+a \right )^{\frac {5}{4}}}{b^{3} x^{7}+3 a \,b^{2} x^{5}+3 a^{2} b \,x^{3}+a^{3} x}d x \right ) a b c +2 \left (\int \frac {\sqrt {x}\, \left (b \,x^{2}+a \right )^{\frac {5}{4}}}{b^{3} x^{7}+3 a \,b^{2} x^{5}+3 a^{2} b \,x^{3}+a^{3} x}d x \right ) b^{2} c \,x^{2}+\left (\int \frac {\sqrt {x}\, \left (b \,x^{2}+a \right )^{\frac {1}{4}}}{b^{2} x^{5}+2 a b \,x^{3}+a^{2} x}d x \right ) a^{2} d +\left (\int \frac {\sqrt {x}\, \left (b \,x^{2}+a \right )^{\frac {1}{4}}}{b^{2} x^{5}+2 a b \,x^{3}+a^{2} x}d x \right ) a b d \,x^{2}\right )}{2 b e \left (b \,x^{2}+a \right )} \] Input:

int((d*x^2+c)/(e*x)^(1/2)/(b*x^2+a)^(7/4),x)
 

Output:

(sqrt(e)*( - 2*sqrt(x)*(a + b*x**2)**(1/4)*d + 2*int((sqrt(x)*(a + b*x**2) 
**(5/4))/(a**3*x + 3*a**2*b*x**3 + 3*a*b**2*x**5 + b**3*x**7),x)*a*b*c + 2 
*int((sqrt(x)*(a + b*x**2)**(5/4))/(a**3*x + 3*a**2*b*x**3 + 3*a*b**2*x**5 
 + b**3*x**7),x)*b**2*c*x**2 + int((sqrt(x)*(a + b*x**2)**(1/4))/(a**2*x + 
 2*a*b*x**3 + b**2*x**5),x)*a**2*d + int((sqrt(x)*(a + b*x**2)**(1/4))/(a* 
*2*x + 2*a*b*x**3 + b**2*x**5),x)*a*b*d*x**2))/(2*b*e*(a + b*x**2))