\(\int \frac {(c+d x^2)^3}{x^{5/2} (a+b x^2)^2} \, dx\) [780]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [C] (verification not implemented)
Sympy [B] (verification not implemented)
Maxima [B] (verification not implemented)
Giac [B] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 24, antiderivative size = 263 \[ \int \frac {\left (c+d x^2\right )^3}{x^{5/2} \left (a+b x^2\right )^2} \, dx=-\frac {2 c^3}{3 a^2 x^{3/2}}+\frac {2 d^3 \sqrt {x}}{b^2}-\frac {(b c-a d)^3 \sqrt {x}}{2 a^2 b^2 \left (a+b x^2\right )}+\frac {(b c-a d)^2 (7 b c+5 a d) \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{4 \sqrt {2} a^{11/4} b^{9/4}}-\frac {(b c-a d)^2 (7 b c+5 a d) \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{4 \sqrt {2} a^{11/4} b^{9/4}}-\frac {(b c-a d)^2 (7 b c+5 a d) \text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}}{\sqrt {a}+\sqrt {b} x}\right )}{4 \sqrt {2} a^{11/4} b^{9/4}} \] Output:

-2/3*c^3/a^2/x^(3/2)+2*d^3*x^(1/2)/b^2-1/2*(-a*d+b*c)^3*x^(1/2)/a^2/b^2/(b 
*x^2+a)+1/8*(-a*d+b*c)^2*(5*a*d+7*b*c)*arctan(1-2^(1/2)*b^(1/4)*x^(1/2)/a^ 
(1/4))*2^(1/2)/a^(11/4)/b^(9/4)-1/8*(-a*d+b*c)^2*(5*a*d+7*b*c)*arctan(1+2^ 
(1/2)*b^(1/4)*x^(1/2)/a^(1/4))*2^(1/2)/a^(11/4)/b^(9/4)-1/8*(-a*d+b*c)^2*( 
5*a*d+7*b*c)*arctanh(2^(1/2)*a^(1/4)*b^(1/4)*x^(1/2)/(a^(1/2)+b^(1/2)*x))* 
2^(1/2)/a^(11/4)/b^(9/4)
 

Mathematica [A] (verified)

Time = 0.49 (sec) , antiderivative size = 229, normalized size of antiderivative = 0.87 \[ \int \frac {\left (c+d x^2\right )^3}{x^{5/2} \left (a+b x^2\right )^2} \, dx=\frac {\frac {4 a^{3/4} \sqrt [4]{b} \left (-7 b^3 c^3 x^2+15 a^3 d^3 x^2+3 a^2 b d^2 x^2 \left (-3 c+4 d x^2\right )+a b^2 c^2 \left (-4 c+9 d x^2\right )\right )}{x^{3/2} \left (a+b x^2\right )}+3 \sqrt {2} (b c-a d)^2 (7 b c+5 a d) \arctan \left (\frac {\sqrt {a}-\sqrt {b} x}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}}\right )-3 \sqrt {2} (b c-a d)^2 (7 b c+5 a d) \text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}}{\sqrt {a}+\sqrt {b} x}\right )}{24 a^{11/4} b^{9/4}} \] Input:

Integrate[(c + d*x^2)^3/(x^(5/2)*(a + b*x^2)^2),x]
 

Output:

((4*a^(3/4)*b^(1/4)*(-7*b^3*c^3*x^2 + 15*a^3*d^3*x^2 + 3*a^2*b*d^2*x^2*(-3 
*c + 4*d*x^2) + a*b^2*c^2*(-4*c + 9*d*x^2)))/(x^(3/2)*(a + b*x^2)) + 3*Sqr 
t[2]*(b*c - a*d)^2*(7*b*c + 5*a*d)*ArcTan[(Sqrt[a] - Sqrt[b]*x)/(Sqrt[2]*a 
^(1/4)*b^(1/4)*Sqrt[x])] - 3*Sqrt[2]*(b*c - a*d)^2*(7*b*c + 5*a*d)*ArcTanh 
[(Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x])/(Sqrt[a] + Sqrt[b]*x)])/(24*a^(11/4)*b^ 
(9/4))
 

Rubi [A] (verified)

Time = 0.55 (sec) , antiderivative size = 372, normalized size of antiderivative = 1.41, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.208, Rules used = {368, 968, 25, 1040, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (c+d x^2\right )^3}{x^{5/2} \left (a+b x^2\right )^2} \, dx\)

\(\Big \downarrow \) 368

\(\displaystyle 2 \int \frac {\left (d x^2+c\right )^3}{x^2 \left (b x^2+a\right )^2}d\sqrt {x}\)

\(\Big \downarrow \) 968

\(\displaystyle 2 \left (\frac {\left (c+d x^2\right )^2 (b c-a d)}{4 a b x^{3/2} \left (a+b x^2\right )}-\frac {\int -\frac {\left (d x^2+c\right ) \left (c (7 b c-3 a d)-d (b c-5 a d) x^2\right )}{x^2 \left (b x^2+a\right )}d\sqrt {x}}{4 a b}\right )\)

\(\Big \downarrow \) 25

\(\displaystyle 2 \left (\frac {\int \frac {\left (d x^2+c\right ) \left (c (7 b c-3 a d)-d (b c-5 a d) x^2\right )}{x^2 \left (b x^2+a\right )}d\sqrt {x}}{4 a b}+\frac {\left (c+d x^2\right )^2 (b c-a d)}{4 a b x^{3/2} \left (a+b x^2\right )}\right )\)

\(\Big \downarrow \) 1040

\(\displaystyle 2 \left (\frac {\int \left (-\frac {(3 a d-7 b c) c^2}{a x^2}-\frac {d^2 (b c-5 a d)}{b}-\frac {(a d-b c)^2 (7 b c+5 a d)}{a b \left (b x^2+a\right )}\right )d\sqrt {x}}{4 a b}+\frac {\left (c+d x^2\right )^2 (b c-a d)}{4 a b x^{3/2} \left (a+b x^2\right )}\right )\)

\(\Big \downarrow \) 2009

\(\displaystyle 2 \left (\frac {\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right ) (b c-a d)^2 (5 a d+7 b c)}{2 \sqrt {2} a^{7/4} b^{5/4}}-\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right ) (b c-a d)^2 (5 a d+7 b c)}{2 \sqrt {2} a^{7/4} b^{5/4}}+\frac {(b c-a d)^2 (5 a d+7 b c) \log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {a}+\sqrt {b} x\right )}{4 \sqrt {2} a^{7/4} b^{5/4}}-\frac {(b c-a d)^2 (5 a d+7 b c) \log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {a}+\sqrt {b} x\right )}{4 \sqrt {2} a^{7/4} b^{5/4}}-\frac {c^2 (7 b c-3 a d)}{3 a x^{3/2}}-\frac {d^2 \sqrt {x} (b c-5 a d)}{b}}{4 a b}+\frac {\left (c+d x^2\right )^2 (b c-a d)}{4 a b x^{3/2} \left (a+b x^2\right )}\right )\)

Input:

Int[(c + d*x^2)^3/(x^(5/2)*(a + b*x^2)^2),x]
 

Output:

2*(((b*c - a*d)*(c + d*x^2)^2)/(4*a*b*x^(3/2)*(a + b*x^2)) + (-1/3*(c^2*(7 
*b*c - 3*a*d))/(a*x^(3/2)) - (d^2*(b*c - 5*a*d)*Sqrt[x])/b + ((b*c - a*d)^ 
2*(7*b*c + 5*a*d)*ArcTan[1 - (Sqrt[2]*b^(1/4)*Sqrt[x])/a^(1/4)])/(2*Sqrt[2 
]*a^(7/4)*b^(5/4)) - ((b*c - a*d)^2*(7*b*c + 5*a*d)*ArcTan[1 + (Sqrt[2]*b^ 
(1/4)*Sqrt[x])/a^(1/4)])/(2*Sqrt[2]*a^(7/4)*b^(5/4)) + ((b*c - a*d)^2*(7*b 
*c + 5*a*d)*Log[Sqrt[a] - Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x] + Sqrt[b]*x])/(4 
*Sqrt[2]*a^(7/4)*b^(5/4)) - ((b*c - a*d)^2*(7*b*c + 5*a*d)*Log[Sqrt[a] + S 
qrt[2]*a^(1/4)*b^(1/4)*Sqrt[x] + Sqrt[b]*x])/(4*Sqrt[2]*a^(7/4)*b^(5/4)))/ 
(4*a*b))
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 368
Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_) 
, x_Symbol] :> With[{k = Denominator[m]}, Simp[k/e   Subst[Int[x^(k*(m + 1) 
 - 1)*(a + b*(x^(k*2)/e^2))^p*(c + d*(x^(k*2)/e^2))^q, x], x, (e*x)^(1/k)], 
 x]] /; FreeQ[{a, b, c, d, e, p, q}, x] && NeQ[b*c - a*d, 0] && FractionQ[m 
] && IntegerQ[p]
 

rule 968
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_ 
))^(q_), x_Symbol] :> Simp[(-(c*b - a*d))*(e*x)^(m + 1)*(a + b*x^n)^(p + 1) 
*((c + d*x^n)^(q - 1)/(a*b*e*n*(p + 1))), x] + Simp[1/(a*b*n*(p + 1))   Int 
[(e*x)^m*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q - 2)*Simp[c*(c*b*n*(p + 1) + (c 
*b - a*d)*(m + 1)) + d*(c*b*n*(p + 1) + (c*b - a*d)*(m + n*(q - 1) + 1))*x^ 
n, x], x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b*c - a*d, 0] && IGtQ[ 
n, 0] && LtQ[p, -1] && GtQ[q, 1] && IntBinomialQ[a, b, c, d, e, m, n, p, q, 
 x]
 

rule 1040
Int[((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n 
_))^(q_.)*((e_) + (f_.)*(x_)^(n_))^(r_.), x_Symbol] :> Int[ExpandIntegrand[ 
(g*x)^m*(a + b*x^n)^p*(c + d*x^n)^q*(e + f*x^n)^r, x], x] /; FreeQ[{a, b, c 
, d, e, f, g, m, n}, x] && IGtQ[p, -2] && IGtQ[q, 0] && IGtQ[r, 0]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 
Maple [A] (verified)

Time = 0.58 (sec) , antiderivative size = 201, normalized size of antiderivative = 0.76

method result size
risch \(\frac {2 a^{2} d^{3} x^{2}-\frac {2 b^{2} c^{3}}{3}}{b^{2} x^{\frac {3}{2}} a^{2}}-\frac {\left (2 a^{2} d^{2}-4 a b c d +2 b^{2} c^{2}\right ) \left (\frac {\left (-\frac {a d}{4}+\frac {b c}{4}\right ) \sqrt {x}}{b \,x^{2}+a}+\frac {\left (5 a d +7 b c \right ) \left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {x +\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}{x -\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}-1\right )\right )}{32 a}\right )}{a^{2} b^{2}}\) \(201\)
derivativedivides \(\frac {2 d^{3} \sqrt {x}}{b^{2}}-\frac {2 c^{3}}{3 a^{2} x^{\frac {3}{2}}}-\frac {2 \left (\frac {\left (-\frac {1}{4} a^{3} d^{3}+\frac {3}{4} a^{2} b c \,d^{2}-\frac {3}{4} a \,b^{2} c^{2} d +\frac {1}{4} b^{3} c^{3}\right ) \sqrt {x}}{b \,x^{2}+a}+\frac {\left (5 a^{3} d^{3}-3 a^{2} b c \,d^{2}-9 a \,b^{2} c^{2} d +7 b^{3} c^{3}\right ) \left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {x +\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}{x -\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}-1\right )\right )}{32 a}\right )}{a^{2} b^{2}}\) \(225\)
default \(\frac {2 d^{3} \sqrt {x}}{b^{2}}-\frac {2 c^{3}}{3 a^{2} x^{\frac {3}{2}}}-\frac {2 \left (\frac {\left (-\frac {1}{4} a^{3} d^{3}+\frac {3}{4} a^{2} b c \,d^{2}-\frac {3}{4} a \,b^{2} c^{2} d +\frac {1}{4} b^{3} c^{3}\right ) \sqrt {x}}{b \,x^{2}+a}+\frac {\left (5 a^{3} d^{3}-3 a^{2} b c \,d^{2}-9 a \,b^{2} c^{2} d +7 b^{3} c^{3}\right ) \left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {x +\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}{x -\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}-1\right )\right )}{32 a}\right )}{a^{2} b^{2}}\) \(225\)

Input:

int((d*x^2+c)^3/x^(5/2)/(b*x^2+a)^2,x,method=_RETURNVERBOSE)
 

Output:

2/3*(3*a^2*d^3*x^2-b^2*c^3)/b^2/x^(3/2)/a^2-1/a^2/b^2*(2*a^2*d^2-4*a*b*c*d 
+2*b^2*c^2)*((-1/4*a*d+1/4*b*c)*x^(1/2)/(b*x^2+a)+1/32*(5*a*d+7*b*c)*(a/b) 
^(1/4)/a*2^(1/2)*(ln((x+(a/b)^(1/4)*x^(1/2)*2^(1/2)+(a/b)^(1/2))/(x-(a/b)^ 
(1/4)*x^(1/2)*2^(1/2)+(a/b)^(1/2)))+2*arctan(2^(1/2)/(a/b)^(1/4)*x^(1/2)+1 
)+2*arctan(2^(1/2)/(a/b)^(1/4)*x^(1/2)-1)))
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.11 (sec) , antiderivative size = 1778, normalized size of antiderivative = 6.76 \[ \int \frac {\left (c+d x^2\right )^3}{x^{5/2} \left (a+b x^2\right )^2} \, dx=\text {Too large to display} \] Input:

integrate((d*x^2+c)^3/x^(5/2)/(b*x^2+a)^2,x, algorithm="fricas")
 

Output:

-1/24*(3*(a^2*b^3*x^4 + a^3*b^2*x^2)*(-(2401*b^12*c^12 - 12348*a*b^11*c^11 
*d + 19698*a^2*b^10*c^10*d^2 + 2324*a^3*b^9*c^9*d^3 - 37665*a^4*b^8*c^8*d^ 
4 + 27144*a^5*b^7*c^7*d^5 + 19068*a^6*b^6*c^6*d^6 - 28728*a^7*b^5*c^5*d^7 
+ 1071*a^8*b^4*c^4*d^8 + 11060*a^9*b^3*c^3*d^9 - 3150*a^10*b^2*c^2*d^10 - 
1500*a^11*b*c*d^11 + 625*a^12*d^12)/(a^11*b^9))^(1/4)*log(a^3*b^2*(-(2401* 
b^12*c^12 - 12348*a*b^11*c^11*d + 19698*a^2*b^10*c^10*d^2 + 2324*a^3*b^9*c 
^9*d^3 - 37665*a^4*b^8*c^8*d^4 + 27144*a^5*b^7*c^7*d^5 + 19068*a^6*b^6*c^6 
*d^6 - 28728*a^7*b^5*c^5*d^7 + 1071*a^8*b^4*c^4*d^8 + 11060*a^9*b^3*c^3*d^ 
9 - 3150*a^10*b^2*c^2*d^10 - 1500*a^11*b*c*d^11 + 625*a^12*d^12)/(a^11*b^9 
))^(1/4) + (7*b^3*c^3 - 9*a*b^2*c^2*d - 3*a^2*b*c*d^2 + 5*a^3*d^3)*sqrt(x) 
) + 3*(I*a^2*b^3*x^4 + I*a^3*b^2*x^2)*(-(2401*b^12*c^12 - 12348*a*b^11*c^1 
1*d + 19698*a^2*b^10*c^10*d^2 + 2324*a^3*b^9*c^9*d^3 - 37665*a^4*b^8*c^8*d 
^4 + 27144*a^5*b^7*c^7*d^5 + 19068*a^6*b^6*c^6*d^6 - 28728*a^7*b^5*c^5*d^7 
 + 1071*a^8*b^4*c^4*d^8 + 11060*a^9*b^3*c^3*d^9 - 3150*a^10*b^2*c^2*d^10 - 
 1500*a^11*b*c*d^11 + 625*a^12*d^12)/(a^11*b^9))^(1/4)*log(I*a^3*b^2*(-(24 
01*b^12*c^12 - 12348*a*b^11*c^11*d + 19698*a^2*b^10*c^10*d^2 + 2324*a^3*b^ 
9*c^9*d^3 - 37665*a^4*b^8*c^8*d^4 + 27144*a^5*b^7*c^7*d^5 + 19068*a^6*b^6* 
c^6*d^6 - 28728*a^7*b^5*c^5*d^7 + 1071*a^8*b^4*c^4*d^8 + 11060*a^9*b^3*c^3 
*d^9 - 3150*a^10*b^2*c^2*d^10 - 1500*a^11*b*c*d^11 + 625*a^12*d^12)/(a^11* 
b^9))^(1/4) + (7*b^3*c^3 - 9*a*b^2*c^2*d - 3*a^2*b*c*d^2 + 5*a^3*d^3)*s...
 

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 2008 vs. \(2 (245) = 490\).

Time = 106.58 (sec) , antiderivative size = 2008, normalized size of antiderivative = 7.63 \[ \int \frac {\left (c+d x^2\right )^3}{x^{5/2} \left (a+b x^2\right )^2} \, dx=\text {Too large to display} \] Input:

integrate((d*x**2+c)**3/x**(5/2)/(b*x**2+a)**2,x)
 

Output:

Piecewise((zoo*(-2*c**3/(11*x**(11/2)) - 6*c**2*d/(7*x**(7/2)) - 2*c*d**2/ 
x**(3/2) + 2*d**3*sqrt(x)), Eq(a, 0) & Eq(b, 0)), ((-2*c**3/(3*x**(3/2)) + 
 6*c**2*d*sqrt(x) + 6*c*d**2*x**(5/2)/5 + 2*d**3*x**(9/2)/9)/a**2, Eq(b, 0 
)), ((-2*c**3/(11*x**(11/2)) - 6*c**2*d/(7*x**(7/2)) - 2*c*d**2/x**(3/2) + 
 2*d**3*sqrt(x))/b**2, Eq(a, 0)), (15*a**4*d**3*x**(3/2)*(-a/b)**(1/4)*log 
(sqrt(x) - (-a/b)**(1/4))/(24*a**4*b**2*x**(3/2) + 24*a**3*b**3*x**(7/2)) 
- 15*a**4*d**3*x**(3/2)*(-a/b)**(1/4)*log(sqrt(x) + (-a/b)**(1/4))/(24*a** 
4*b**2*x**(3/2) + 24*a**3*b**3*x**(7/2)) - 30*a**4*d**3*x**(3/2)*(-a/b)**( 
1/4)*atan(sqrt(x)/(-a/b)**(1/4))/(24*a**4*b**2*x**(3/2) + 24*a**3*b**3*x** 
(7/2)) + 60*a**4*d**3*x**2/(24*a**4*b**2*x**(3/2) + 24*a**3*b**3*x**(7/2)) 
 - 9*a**3*b*c*d**2*x**(3/2)*(-a/b)**(1/4)*log(sqrt(x) - (-a/b)**(1/4))/(24 
*a**4*b**2*x**(3/2) + 24*a**3*b**3*x**(7/2)) + 9*a**3*b*c*d**2*x**(3/2)*(- 
a/b)**(1/4)*log(sqrt(x) + (-a/b)**(1/4))/(24*a**4*b**2*x**(3/2) + 24*a**3* 
b**3*x**(7/2)) + 18*a**3*b*c*d**2*x**(3/2)*(-a/b)**(1/4)*atan(sqrt(x)/(-a/ 
b)**(1/4))/(24*a**4*b**2*x**(3/2) + 24*a**3*b**3*x**(7/2)) - 36*a**3*b*c*d 
**2*x**2/(24*a**4*b**2*x**(3/2) + 24*a**3*b**3*x**(7/2)) + 15*a**3*b*d**3* 
x**(7/2)*(-a/b)**(1/4)*log(sqrt(x) - (-a/b)**(1/4))/(24*a**4*b**2*x**(3/2) 
 + 24*a**3*b**3*x**(7/2)) - 15*a**3*b*d**3*x**(7/2)*(-a/b)**(1/4)*log(sqrt 
(x) + (-a/b)**(1/4))/(24*a**4*b**2*x**(3/2) + 24*a**3*b**3*x**(7/2)) - 30* 
a**3*b*d**3*x**(7/2)*(-a/b)**(1/4)*atan(sqrt(x)/(-a/b)**(1/4))/(24*a**4...
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 415 vs. \(2 (201) = 402\).

Time = 0.13 (sec) , antiderivative size = 415, normalized size of antiderivative = 1.58 \[ \int \frac {\left (c+d x^2\right )^3}{x^{5/2} \left (a+b x^2\right )^2} \, dx=\frac {2 \, d^{3} \sqrt {x}}{b^{2}} - \frac {4 \, a b^{2} c^{3} + {\left (7 \, b^{3} c^{3} - 9 \, a b^{2} c^{2} d + 9 \, a^{2} b c d^{2} - 3 \, a^{3} d^{3}\right )} x^{2}}{6 \, {\left (a^{2} b^{3} x^{\frac {7}{2}} + a^{3} b^{2} x^{\frac {3}{2}}\right )}} - \frac {\frac {2 \, \sqrt {2} {\left (7 \, b^{3} c^{3} - 9 \, a b^{2} c^{2} d - 3 \, a^{2} b c d^{2} + 5 \, a^{3} d^{3}\right )} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} + 2 \, \sqrt {b} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b}}}\right )}{\sqrt {a} \sqrt {\sqrt {a} \sqrt {b}}} + \frac {2 \, \sqrt {2} {\left (7 \, b^{3} c^{3} - 9 \, a b^{2} c^{2} d - 3 \, a^{2} b c d^{2} + 5 \, a^{3} d^{3}\right )} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} - 2 \, \sqrt {b} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b}}}\right )}{\sqrt {a} \sqrt {\sqrt {a} \sqrt {b}}} + \frac {\sqrt {2} {\left (7 \, b^{3} c^{3} - 9 \, a b^{2} c^{2} d - 3 \, a^{2} b c d^{2} + 5 \, a^{3} d^{3}\right )} \log \left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {x} + \sqrt {b} x + \sqrt {a}\right )}{a^{\frac {3}{4}} b^{\frac {1}{4}}} - \frac {\sqrt {2} {\left (7 \, b^{3} c^{3} - 9 \, a b^{2} c^{2} d - 3 \, a^{2} b c d^{2} + 5 \, a^{3} d^{3}\right )} \log \left (-\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {x} + \sqrt {b} x + \sqrt {a}\right )}{a^{\frac {3}{4}} b^{\frac {1}{4}}}}{16 \, a^{2} b^{2}} \] Input:

integrate((d*x^2+c)^3/x^(5/2)/(b*x^2+a)^2,x, algorithm="maxima")
 

Output:

2*d^3*sqrt(x)/b^2 - 1/6*(4*a*b^2*c^3 + (7*b^3*c^3 - 9*a*b^2*c^2*d + 9*a^2* 
b*c*d^2 - 3*a^3*d^3)*x^2)/(a^2*b^3*x^(7/2) + a^3*b^2*x^(3/2)) - 1/16*(2*sq 
rt(2)*(7*b^3*c^3 - 9*a*b^2*c^2*d - 3*a^2*b*c*d^2 + 5*a^3*d^3)*arctan(1/2*s 
qrt(2)*(sqrt(2)*a^(1/4)*b^(1/4) + 2*sqrt(b)*sqrt(x))/sqrt(sqrt(a)*sqrt(b)) 
)/(sqrt(a)*sqrt(sqrt(a)*sqrt(b))) + 2*sqrt(2)*(7*b^3*c^3 - 9*a*b^2*c^2*d - 
 3*a^2*b*c*d^2 + 5*a^3*d^3)*arctan(-1/2*sqrt(2)*(sqrt(2)*a^(1/4)*b^(1/4) - 
 2*sqrt(b)*sqrt(x))/sqrt(sqrt(a)*sqrt(b)))/(sqrt(a)*sqrt(sqrt(a)*sqrt(b))) 
 + sqrt(2)*(7*b^3*c^3 - 9*a*b^2*c^2*d - 3*a^2*b*c*d^2 + 5*a^3*d^3)*log(sqr 
t(2)*a^(1/4)*b^(1/4)*sqrt(x) + sqrt(b)*x + sqrt(a))/(a^(3/4)*b^(1/4)) - sq 
rt(2)*(7*b^3*c^3 - 9*a*b^2*c^2*d - 3*a^2*b*c*d^2 + 5*a^3*d^3)*log(-sqrt(2) 
*a^(1/4)*b^(1/4)*sqrt(x) + sqrt(b)*x + sqrt(a))/(a^(3/4)*b^(1/4)))/(a^2*b^ 
2)
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 501 vs. \(2 (201) = 402\).

Time = 0.14 (sec) , antiderivative size = 501, normalized size of antiderivative = 1.90 \[ \int \frac {\left (c+d x^2\right )^3}{x^{5/2} \left (a+b x^2\right )^2} \, dx=\frac {2 \, d^{3} \sqrt {x}}{b^{2}} - \frac {2 \, c^{3}}{3 \, a^{2} x^{\frac {3}{2}}} - \frac {\sqrt {2} {\left (7 \, \left (a b^{3}\right )^{\frac {1}{4}} b^{3} c^{3} - 9 \, \left (a b^{3}\right )^{\frac {1}{4}} a b^{2} c^{2} d - 3 \, \left (a b^{3}\right )^{\frac {1}{4}} a^{2} b c d^{2} + 5 \, \left (a b^{3}\right )^{\frac {1}{4}} a^{3} d^{3}\right )} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {a}{b}\right )^{\frac {1}{4}} + 2 \, \sqrt {x}\right )}}{2 \, \left (\frac {a}{b}\right )^{\frac {1}{4}}}\right )}{8 \, a^{3} b^{3}} - \frac {\sqrt {2} {\left (7 \, \left (a b^{3}\right )^{\frac {1}{4}} b^{3} c^{3} - 9 \, \left (a b^{3}\right )^{\frac {1}{4}} a b^{2} c^{2} d - 3 \, \left (a b^{3}\right )^{\frac {1}{4}} a^{2} b c d^{2} + 5 \, \left (a b^{3}\right )^{\frac {1}{4}} a^{3} d^{3}\right )} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {a}{b}\right )^{\frac {1}{4}} - 2 \, \sqrt {x}\right )}}{2 \, \left (\frac {a}{b}\right )^{\frac {1}{4}}}\right )}{8 \, a^{3} b^{3}} - \frac {\sqrt {2} {\left (7 \, \left (a b^{3}\right )^{\frac {1}{4}} b^{3} c^{3} - 9 \, \left (a b^{3}\right )^{\frac {1}{4}} a b^{2} c^{2} d - 3 \, \left (a b^{3}\right )^{\frac {1}{4}} a^{2} b c d^{2} + 5 \, \left (a b^{3}\right )^{\frac {1}{4}} a^{3} d^{3}\right )} \log \left (\sqrt {2} \sqrt {x} \left (\frac {a}{b}\right )^{\frac {1}{4}} + x + \sqrt {\frac {a}{b}}\right )}{16 \, a^{3} b^{3}} + \frac {\sqrt {2} {\left (7 \, \left (a b^{3}\right )^{\frac {1}{4}} b^{3} c^{3} - 9 \, \left (a b^{3}\right )^{\frac {1}{4}} a b^{2} c^{2} d - 3 \, \left (a b^{3}\right )^{\frac {1}{4}} a^{2} b c d^{2} + 5 \, \left (a b^{3}\right )^{\frac {1}{4}} a^{3} d^{3}\right )} \log \left (-\sqrt {2} \sqrt {x} \left (\frac {a}{b}\right )^{\frac {1}{4}} + x + \sqrt {\frac {a}{b}}\right )}{16 \, a^{3} b^{3}} - \frac {b^{3} c^{3} \sqrt {x} - 3 \, a b^{2} c^{2} d \sqrt {x} + 3 \, a^{2} b c d^{2} \sqrt {x} - a^{3} d^{3} \sqrt {x}}{2 \, {\left (b x^{2} + a\right )} a^{2} b^{2}} \] Input:

integrate((d*x^2+c)^3/x^(5/2)/(b*x^2+a)^2,x, algorithm="giac")
 

Output:

2*d^3*sqrt(x)/b^2 - 2/3*c^3/(a^2*x^(3/2)) - 1/8*sqrt(2)*(7*(a*b^3)^(1/4)*b 
^3*c^3 - 9*(a*b^3)^(1/4)*a*b^2*c^2*d - 3*(a*b^3)^(1/4)*a^2*b*c*d^2 + 5*(a* 
b^3)^(1/4)*a^3*d^3)*arctan(1/2*sqrt(2)*(sqrt(2)*(a/b)^(1/4) + 2*sqrt(x))/( 
a/b)^(1/4))/(a^3*b^3) - 1/8*sqrt(2)*(7*(a*b^3)^(1/4)*b^3*c^3 - 9*(a*b^3)^( 
1/4)*a*b^2*c^2*d - 3*(a*b^3)^(1/4)*a^2*b*c*d^2 + 5*(a*b^3)^(1/4)*a^3*d^3)* 
arctan(-1/2*sqrt(2)*(sqrt(2)*(a/b)^(1/4) - 2*sqrt(x))/(a/b)^(1/4))/(a^3*b^ 
3) - 1/16*sqrt(2)*(7*(a*b^3)^(1/4)*b^3*c^3 - 9*(a*b^3)^(1/4)*a*b^2*c^2*d - 
 3*(a*b^3)^(1/4)*a^2*b*c*d^2 + 5*(a*b^3)^(1/4)*a^3*d^3)*log(sqrt(2)*sqrt(x 
)*(a/b)^(1/4) + x + sqrt(a/b))/(a^3*b^3) + 1/16*sqrt(2)*(7*(a*b^3)^(1/4)*b 
^3*c^3 - 9*(a*b^3)^(1/4)*a*b^2*c^2*d - 3*(a*b^3)^(1/4)*a^2*b*c*d^2 + 5*(a* 
b^3)^(1/4)*a^3*d^3)*log(-sqrt(2)*sqrt(x)*(a/b)^(1/4) + x + sqrt(a/b))/(a^3 
*b^3) - 1/2*(b^3*c^3*sqrt(x) - 3*a*b^2*c^2*d*sqrt(x) + 3*a^2*b*c*d^2*sqrt( 
x) - a^3*d^3*sqrt(x))/((b*x^2 + a)*a^2*b^2)
 

Mupad [B] (verification not implemented)

Time = 0.31 (sec) , antiderivative size = 1759, normalized size of antiderivative = 6.69 \[ \int \frac {\left (c+d x^2\right )^3}{x^{5/2} \left (a+b x^2\right )^2} \, dx=\text {Too large to display} \] Input:

int((c + d*x^2)^3/(x^(5/2)*(a + b*x^2)^2),x)
 

Output:

((x^2*(3*a^3*d^3 - 7*b^3*c^3 + 9*a*b^2*c^2*d - 9*a^2*b*c*d^2))/(6*a^2) - ( 
2*b^2*c^3)/(3*a))/(b^3*x^(7/2) + a*b^2*x^(3/2)) + (2*d^3*x^(1/2))/b^2 - (a 
tan((((x^(1/2)*(1568*a^6*b^15*c^6 + 800*a^12*b^9*d^6 - 4032*a^7*b^14*c^5*d 
 - 960*a^11*b^10*c*d^5 + 1248*a^8*b^13*c^4*d^2 + 3968*a^9*b^12*c^3*d^3 - 2 
592*a^10*b^11*c^2*d^4) - ((a*d - b*c)^2*(5*a*d + 7*b*c)*(1792*a^9*b^14*c^3 
 + 1280*a^12*b^11*d^3 - 2304*a^10*b^13*c^2*d - 768*a^11*b^12*c*d^2))/(8*(- 
a)^(11/4)*b^(9/4)))*(a*d - b*c)^2*(5*a*d + 7*b*c)*1i)/(8*(-a)^(11/4)*b^(9/ 
4)) + ((x^(1/2)*(1568*a^6*b^15*c^6 + 800*a^12*b^9*d^6 - 4032*a^7*b^14*c^5* 
d - 960*a^11*b^10*c*d^5 + 1248*a^8*b^13*c^4*d^2 + 3968*a^9*b^12*c^3*d^3 - 
2592*a^10*b^11*c^2*d^4) + ((a*d - b*c)^2*(5*a*d + 7*b*c)*(1792*a^9*b^14*c^ 
3 + 1280*a^12*b^11*d^3 - 2304*a^10*b^13*c^2*d - 768*a^11*b^12*c*d^2))/(8*( 
-a)^(11/4)*b^(9/4)))*(a*d - b*c)^2*(5*a*d + 7*b*c)*1i)/(8*(-a)^(11/4)*b^(9 
/4)))/(((x^(1/2)*(1568*a^6*b^15*c^6 + 800*a^12*b^9*d^6 - 4032*a^7*b^14*c^5 
*d - 960*a^11*b^10*c*d^5 + 1248*a^8*b^13*c^4*d^2 + 3968*a^9*b^12*c^3*d^3 - 
 2592*a^10*b^11*c^2*d^4) - ((a*d - b*c)^2*(5*a*d + 7*b*c)*(1792*a^9*b^14*c 
^3 + 1280*a^12*b^11*d^3 - 2304*a^10*b^13*c^2*d - 768*a^11*b^12*c*d^2))/(8* 
(-a)^(11/4)*b^(9/4)))*(a*d - b*c)^2*(5*a*d + 7*b*c))/(8*(-a)^(11/4)*b^(9/4 
)) - ((x^(1/2)*(1568*a^6*b^15*c^6 + 800*a^12*b^9*d^6 - 4032*a^7*b^14*c^5*d 
 - 960*a^11*b^10*c*d^5 + 1248*a^8*b^13*c^4*d^2 + 3968*a^9*b^12*c^3*d^3 - 2 
592*a^10*b^11*c^2*d^4) + ((a*d - b*c)^2*(5*a*d + 7*b*c)*(1792*a^9*b^14*...
 

Reduce [B] (verification not implemented)

Time = 0.21 (sec) , antiderivative size = 1424, normalized size of antiderivative = 5.41 \[ \int \frac {\left (c+d x^2\right )^3}{x^{5/2} \left (a+b x^2\right )^2} \, dx =\text {Too large to display} \] Input:

int((d*x^2+c)^3/x^(5/2)/(b*x^2+a)^2,x)
 

Output:

(30*sqrt(x)*b**(3/4)*a**(1/4)*sqrt(2)*atan((b**(1/4)*a**(1/4)*sqrt(2) - 2* 
sqrt(x)*sqrt(b))/(b**(1/4)*a**(1/4)*sqrt(2)))*a**4*d**3*x - 18*sqrt(x)*b** 
(3/4)*a**(1/4)*sqrt(2)*atan((b**(1/4)*a**(1/4)*sqrt(2) - 2*sqrt(x)*sqrt(b) 
)/(b**(1/4)*a**(1/4)*sqrt(2)))*a**3*b*c*d**2*x + 30*sqrt(x)*b**(3/4)*a**(1 
/4)*sqrt(2)*atan((b**(1/4)*a**(1/4)*sqrt(2) - 2*sqrt(x)*sqrt(b))/(b**(1/4) 
*a**(1/4)*sqrt(2)))*a**3*b*d**3*x**3 - 54*sqrt(x)*b**(3/4)*a**(1/4)*sqrt(2 
)*atan((b**(1/4)*a**(1/4)*sqrt(2) - 2*sqrt(x)*sqrt(b))/(b**(1/4)*a**(1/4)* 
sqrt(2)))*a**2*b**2*c**2*d*x - 18*sqrt(x)*b**(3/4)*a**(1/4)*sqrt(2)*atan(( 
b**(1/4)*a**(1/4)*sqrt(2) - 2*sqrt(x)*sqrt(b))/(b**(1/4)*a**(1/4)*sqrt(2)) 
)*a**2*b**2*c*d**2*x**3 + 42*sqrt(x)*b**(3/4)*a**(1/4)*sqrt(2)*atan((b**(1 
/4)*a**(1/4)*sqrt(2) - 2*sqrt(x)*sqrt(b))/(b**(1/4)*a**(1/4)*sqrt(2)))*a*b 
**3*c**3*x - 54*sqrt(x)*b**(3/4)*a**(1/4)*sqrt(2)*atan((b**(1/4)*a**(1/4)* 
sqrt(2) - 2*sqrt(x)*sqrt(b))/(b**(1/4)*a**(1/4)*sqrt(2)))*a*b**3*c**2*d*x* 
*3 + 42*sqrt(x)*b**(3/4)*a**(1/4)*sqrt(2)*atan((b**(1/4)*a**(1/4)*sqrt(2) 
- 2*sqrt(x)*sqrt(b))/(b**(1/4)*a**(1/4)*sqrt(2)))*b**4*c**3*x**3 - 30*sqrt 
(x)*b**(3/4)*a**(1/4)*sqrt(2)*atan((b**(1/4)*a**(1/4)*sqrt(2) + 2*sqrt(x)* 
sqrt(b))/(b**(1/4)*a**(1/4)*sqrt(2)))*a**4*d**3*x + 18*sqrt(x)*b**(3/4)*a* 
*(1/4)*sqrt(2)*atan((b**(1/4)*a**(1/4)*sqrt(2) + 2*sqrt(x)*sqrt(b))/(b**(1 
/4)*a**(1/4)*sqrt(2)))*a**3*b*c*d**2*x - 30*sqrt(x)*b**(3/4)*a**(1/4)*sqrt 
(2)*atan((b**(1/4)*a**(1/4)*sqrt(2) + 2*sqrt(x)*sqrt(b))/(b**(1/4)*a**(...