\(\int \frac {x^2 \sqrt {c+d x^2}}{a+b x^2} \, dx\) [925]

Optimal result
Mathematica [B] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F(-2)]
Mupad [F(-1)]
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 24, antiderivative size = 112 \[ \int \frac {x^2 \sqrt {c+d x^2}}{a+b x^2} \, dx=\frac {x \sqrt {c+d x^2}}{2 b}-\frac {\sqrt {a} \sqrt {b c-a d} \arctan \left (\frac {\sqrt {b c-a d} x}{\sqrt {a} \sqrt {c+d x^2}}\right )}{b^2}+\frac {(b c-2 a d) \text {arctanh}\left (\frac {\sqrt {d} x}{\sqrt {c+d x^2}}\right )}{2 b^2 \sqrt {d}} \] Output:

1/2*x*(d*x^2+c)^(1/2)/b-a^(1/2)*(-a*d+b*c)^(1/2)*arctan((-a*d+b*c)^(1/2)*x 
/a^(1/2)/(d*x^2+c)^(1/2))/b^2+1/2*(-2*a*d+b*c)*arctanh(d^(1/2)*x/(d*x^2+c) 
^(1/2))/b^2/d^(1/2)
 

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(354\) vs. \(2(112)=224\).

Time = 1.41 (sec) , antiderivative size = 354, normalized size of antiderivative = 3.16 \[ \int \frac {x^2 \sqrt {c+d x^2}}{a+b x^2} \, dx=\frac {b x \sqrt {c+d x^2}+\frac {2 \left (-b c+a d+\sqrt {b} \sqrt {c} \sqrt {b c-a d}\right ) \sqrt {2 b c-a d+2 \sqrt {b} \sqrt {c} \sqrt {b c-a d}} \arctan \left (\frac {\sqrt {2 b c-a d+2 \sqrt {b} \sqrt {c} \sqrt {b c-a d}} x}{\sqrt {a} \left (\sqrt {c}-\sqrt {c+d x^2}\right )}\right )}{\sqrt {a} d}+\frac {2 \sqrt {2 b c-a d-2 \sqrt {b} \sqrt {c} \sqrt {b c-a d}} \left (b c-a d+\sqrt {b} \sqrt {c} \sqrt {b c-a d}\right ) \arctan \left (\frac {\sqrt {2 b c-a d-2 \sqrt {b} \sqrt {c} \sqrt {b c-a d}} x}{\sqrt {a} \left (-\sqrt {c}+\sqrt {c+d x^2}\right )}\right )}{\sqrt {a} d}+\frac {2 (b c-2 a d) \text {arctanh}\left (\frac {\sqrt {d} x}{-\sqrt {c}+\sqrt {c+d x^2}}\right )}{\sqrt {d}}}{2 b^2} \] Input:

Integrate[(x^2*Sqrt[c + d*x^2])/(a + b*x^2),x]
 

Output:

(b*x*Sqrt[c + d*x^2] + (2*(-(b*c) + a*d + Sqrt[b]*Sqrt[c]*Sqrt[b*c - a*d]) 
*Sqrt[2*b*c - a*d + 2*Sqrt[b]*Sqrt[c]*Sqrt[b*c - a*d]]*ArcTan[(Sqrt[2*b*c 
- a*d + 2*Sqrt[b]*Sqrt[c]*Sqrt[b*c - a*d]]*x)/(Sqrt[a]*(Sqrt[c] - Sqrt[c + 
 d*x^2]))])/(Sqrt[a]*d) + (2*Sqrt[2*b*c - a*d - 2*Sqrt[b]*Sqrt[c]*Sqrt[b*c 
 - a*d]]*(b*c - a*d + Sqrt[b]*Sqrt[c]*Sqrt[b*c - a*d])*ArcTan[(Sqrt[2*b*c 
- a*d - 2*Sqrt[b]*Sqrt[c]*Sqrt[b*c - a*d]]*x)/(Sqrt[a]*(-Sqrt[c] + Sqrt[c 
+ d*x^2]))])/(Sqrt[a]*d) + (2*(b*c - 2*a*d)*ArcTanh[(Sqrt[d]*x)/(-Sqrt[c] 
+ Sqrt[c + d*x^2])])/Sqrt[d])/(2*b^2)
 

Rubi [A] (verified)

Time = 0.26 (sec) , antiderivative size = 118, normalized size of antiderivative = 1.05, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {380, 398, 224, 219, 291, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^2 \sqrt {c+d x^2}}{a+b x^2} \, dx\)

\(\Big \downarrow \) 380

\(\displaystyle \frac {x \sqrt {c+d x^2}}{2 b}-\frac {\int \frac {a c-(b c-2 a d) x^2}{\left (b x^2+a\right ) \sqrt {d x^2+c}}dx}{2 b}\)

\(\Big \downarrow \) 398

\(\displaystyle \frac {x \sqrt {c+d x^2}}{2 b}-\frac {\frac {2 a (b c-a d) \int \frac {1}{\left (b x^2+a\right ) \sqrt {d x^2+c}}dx}{b}-\frac {(b c-2 a d) \int \frac {1}{\sqrt {d x^2+c}}dx}{b}}{2 b}\)

\(\Big \downarrow \) 224

\(\displaystyle \frac {x \sqrt {c+d x^2}}{2 b}-\frac {\frac {2 a (b c-a d) \int \frac {1}{\left (b x^2+a\right ) \sqrt {d x^2+c}}dx}{b}-\frac {(b c-2 a d) \int \frac {1}{1-\frac {d x^2}{d x^2+c}}d\frac {x}{\sqrt {d x^2+c}}}{b}}{2 b}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {x \sqrt {c+d x^2}}{2 b}-\frac {\frac {2 a (b c-a d) \int \frac {1}{\left (b x^2+a\right ) \sqrt {d x^2+c}}dx}{b}-\frac {(b c-2 a d) \text {arctanh}\left (\frac {\sqrt {d} x}{\sqrt {c+d x^2}}\right )}{b \sqrt {d}}}{2 b}\)

\(\Big \downarrow \) 291

\(\displaystyle \frac {x \sqrt {c+d x^2}}{2 b}-\frac {\frac {2 a (b c-a d) \int \frac {1}{a-\frac {(a d-b c) x^2}{d x^2+c}}d\frac {x}{\sqrt {d x^2+c}}}{b}-\frac {(b c-2 a d) \text {arctanh}\left (\frac {\sqrt {d} x}{\sqrt {c+d x^2}}\right )}{b \sqrt {d}}}{2 b}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {x \sqrt {c+d x^2}}{2 b}-\frac {\frac {2 \sqrt {a} \sqrt {b c-a d} \arctan \left (\frac {x \sqrt {b c-a d}}{\sqrt {a} \sqrt {c+d x^2}}\right )}{b}-\frac {(b c-2 a d) \text {arctanh}\left (\frac {\sqrt {d} x}{\sqrt {c+d x^2}}\right )}{b \sqrt {d}}}{2 b}\)

Input:

Int[(x^2*Sqrt[c + d*x^2])/(a + b*x^2),x]
 

Output:

(x*Sqrt[c + d*x^2])/(2*b) - ((2*Sqrt[a]*Sqrt[b*c - a*d]*ArcTan[(Sqrt[b*c - 
 a*d]*x)/(Sqrt[a]*Sqrt[c + d*x^2])])/b - ((b*c - 2*a*d)*ArcTanh[(Sqrt[d]*x 
)/Sqrt[c + d*x^2]])/(b*Sqrt[d]))/(2*b)
 

Defintions of rubi rules used

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 224
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], 
x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b}, x] &&  !GtQ[a, 0]
 

rule 291
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Subst 
[Int[1/(c - (b*c - a*d)*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b, c, 
d}, x] && NeQ[b*c - a*d, 0]
 

rule 380
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_ 
), x_Symbol] :> Simp[e*(e*x)^(m - 1)*(a + b*x^2)^(p + 1)*((c + d*x^2)^q/(b* 
(m + 2*(p + q) + 1))), x] - Simp[e^2/(b*(m + 2*(p + q) + 1))   Int[(e*x)^(m 
 - 2)*(a + b*x^2)^p*(c + d*x^2)^(q - 1)*Simp[a*c*(m - 1) + (a*d*(m - 1) - 2 
*q*(b*c - a*d))*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b*c 
- a*d, 0] && GtQ[q, 0] && GtQ[m, 1] && IntBinomialQ[a, b, c, d, e, m, 2, p, 
 q, x]
 

rule 398
Int[((e_) + (f_.)*(x_)^2)/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]) 
, x_Symbol] :> Simp[f/b   Int[1/Sqrt[c + d*x^2], x], x] + Simp[(b*e - a*f)/ 
b   Int[1/((a + b*x^2)*Sqrt[c + d*x^2]), x], x] /; FreeQ[{a, b, c, d, e, f} 
, x]
 
Maple [A] (verified)

Time = 0.74 (sec) , antiderivative size = 100, normalized size of antiderivative = 0.89

method result size
pseudoelliptic \(-\frac {-\frac {2 \left (a d -b c \right ) a \,\operatorname {arctanh}\left (\frac {\sqrt {x^{2} d +c}\, a}{x \sqrt {\left (a d -b c \right ) a}}\right )}{\sqrt {\left (a d -b c \right ) a}}-\sqrt {x^{2} d +c}\, b x +\frac {\left (2 a d -b c \right ) \operatorname {arctanh}\left (\frac {\sqrt {x^{2} d +c}}{x \sqrt {d}}\right )}{\sqrt {d}}}{2 b^{2}}\) \(100\)
risch \(\frac {x \sqrt {x^{2} d +c}}{2 b}-\frac {\frac {\left (2 a d -b c \right ) \ln \left (\sqrt {d}\, x +\sqrt {x^{2} d +c}\right )}{b \sqrt {d}}-\frac {a \left (a d -b c \right ) \ln \left (\frac {-\frac {2 \left (a d -b c \right )}{b}-\frac {2 d \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -b c}{b}}\, \sqrt {\left (x +\frac {\sqrt {-a b}}{b}\right )^{2} d -\frac {2 d \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}{x +\frac {\sqrt {-a b}}{b}}\right )}{\sqrt {-a b}\, b \sqrt {-\frac {a d -b c}{b}}}+\frac {a \left (a d -b c \right ) \ln \left (\frac {-\frac {2 \left (a d -b c \right )}{b}+\frac {2 d \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -b c}{b}}\, \sqrt {\left (x -\frac {\sqrt {-a b}}{b}\right )^{2} d +\frac {2 d \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}{x -\frac {\sqrt {-a b}}{b}}\right )}{\sqrt {-a b}\, b \sqrt {-\frac {a d -b c}{b}}}}{2 b}\) \(382\)
default \(\frac {\frac {x \sqrt {x^{2} d +c}}{2}+\frac {c \ln \left (\sqrt {d}\, x +\sqrt {x^{2} d +c}\right )}{2 \sqrt {d}}}{b}-\frac {a \left (\sqrt {\left (x -\frac {\sqrt {-a b}}{b}\right )^{2} d +\frac {2 d \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}+\frac {\sqrt {d}\, \sqrt {-a b}\, \ln \left (\frac {\frac {d \sqrt {-a b}}{b}+d \left (x -\frac {\sqrt {-a b}}{b}\right )}{\sqrt {d}}+\sqrt {\left (x -\frac {\sqrt {-a b}}{b}\right )^{2} d +\frac {2 d \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}\right )}{b}+\frac {\left (a d -b c \right ) \ln \left (\frac {-\frac {2 \left (a d -b c \right )}{b}+\frac {2 d \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -b c}{b}}\, \sqrt {\left (x -\frac {\sqrt {-a b}}{b}\right )^{2} d +\frac {2 d \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}{x -\frac {\sqrt {-a b}}{b}}\right )}{b \sqrt {-\frac {a d -b c}{b}}}\right )}{2 \sqrt {-a b}\, b}+\frac {a \left (\sqrt {\left (x +\frac {\sqrt {-a b}}{b}\right )^{2} d -\frac {2 d \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}-\frac {\sqrt {d}\, \sqrt {-a b}\, \ln \left (\frac {-\frac {d \sqrt {-a b}}{b}+d \left (x +\frac {\sqrt {-a b}}{b}\right )}{\sqrt {d}}+\sqrt {\left (x +\frac {\sqrt {-a b}}{b}\right )^{2} d -\frac {2 d \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}\right )}{b}+\frac {\left (a d -b c \right ) \ln \left (\frac {-\frac {2 \left (a d -b c \right )}{b}-\frac {2 d \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -b c}{b}}\, \sqrt {\left (x +\frac {\sqrt {-a b}}{b}\right )^{2} d -\frac {2 d \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}{x +\frac {\sqrt {-a b}}{b}}\right )}{b \sqrt {-\frac {a d -b c}{b}}}\right )}{2 \sqrt {-a b}\, b}\) \(700\)

Input:

int(x^2*(d*x^2+c)^(1/2)/(b*x^2+a),x,method=_RETURNVERBOSE)
 

Output:

-1/2/b^2*(-2*(a*d-b*c)*a/((a*d-b*c)*a)^(1/2)*arctanh((d*x^2+c)^(1/2)/x*a/( 
(a*d-b*c)*a)^(1/2))-(d*x^2+c)^(1/2)*b*x+(2*a*d-b*c)/d^(1/2)*arctanh((d*x^2 
+c)^(1/2)/x/d^(1/2)))
 

Fricas [A] (verification not implemented)

Time = 0.15 (sec) , antiderivative size = 690, normalized size of antiderivative = 6.16 \[ \int \frac {x^2 \sqrt {c+d x^2}}{a+b x^2} \, dx=\left [\frac {2 \, \sqrt {d x^{2} + c} b d x - {\left (b c - 2 \, a d\right )} \sqrt {d} \log \left (-2 \, d x^{2} + 2 \, \sqrt {d x^{2} + c} \sqrt {d} x - c\right ) + \sqrt {-a b c + a^{2} d} d \log \left (\frac {{\left (b^{2} c^{2} - 8 \, a b c d + 8 \, a^{2} d^{2}\right )} x^{4} + a^{2} c^{2} - 2 \, {\left (3 \, a b c^{2} - 4 \, a^{2} c d\right )} x^{2} - 4 \, {\left ({\left (b c - 2 \, a d\right )} x^{3} - a c x\right )} \sqrt {-a b c + a^{2} d} \sqrt {d x^{2} + c}}{b^{2} x^{4} + 2 \, a b x^{2} + a^{2}}\right )}{4 \, b^{2} d}, \frac {2 \, \sqrt {d x^{2} + c} b d x - 2 \, {\left (b c - 2 \, a d\right )} \sqrt {-d} \arctan \left (\frac {\sqrt {-d} x}{\sqrt {d x^{2} + c}}\right ) + \sqrt {-a b c + a^{2} d} d \log \left (\frac {{\left (b^{2} c^{2} - 8 \, a b c d + 8 \, a^{2} d^{2}\right )} x^{4} + a^{2} c^{2} - 2 \, {\left (3 \, a b c^{2} - 4 \, a^{2} c d\right )} x^{2} - 4 \, {\left ({\left (b c - 2 \, a d\right )} x^{3} - a c x\right )} \sqrt {-a b c + a^{2} d} \sqrt {d x^{2} + c}}{b^{2} x^{4} + 2 \, a b x^{2} + a^{2}}\right )}{4 \, b^{2} d}, \frac {2 \, \sqrt {d x^{2} + c} b d x - 2 \, \sqrt {a b c - a^{2} d} d \arctan \left (\frac {\sqrt {a b c - a^{2} d} {\left ({\left (b c - 2 \, a d\right )} x^{2} - a c\right )} \sqrt {d x^{2} + c}}{2 \, {\left ({\left (a b c d - a^{2} d^{2}\right )} x^{3} + {\left (a b c^{2} - a^{2} c d\right )} x\right )}}\right ) - {\left (b c - 2 \, a d\right )} \sqrt {d} \log \left (-2 \, d x^{2} + 2 \, \sqrt {d x^{2} + c} \sqrt {d} x - c\right )}{4 \, b^{2} d}, \frac {\sqrt {d x^{2} + c} b d x - \sqrt {a b c - a^{2} d} d \arctan \left (\frac {\sqrt {a b c - a^{2} d} {\left ({\left (b c - 2 \, a d\right )} x^{2} - a c\right )} \sqrt {d x^{2} + c}}{2 \, {\left ({\left (a b c d - a^{2} d^{2}\right )} x^{3} + {\left (a b c^{2} - a^{2} c d\right )} x\right )}}\right ) - {\left (b c - 2 \, a d\right )} \sqrt {-d} \arctan \left (\frac {\sqrt {-d} x}{\sqrt {d x^{2} + c}}\right )}{2 \, b^{2} d}\right ] \] Input:

integrate(x^2*(d*x^2+c)^(1/2)/(b*x^2+a),x, algorithm="fricas")
 

Output:

[1/4*(2*sqrt(d*x^2 + c)*b*d*x - (b*c - 2*a*d)*sqrt(d)*log(-2*d*x^2 + 2*sqr 
t(d*x^2 + c)*sqrt(d)*x - c) + sqrt(-a*b*c + a^2*d)*d*log(((b^2*c^2 - 8*a*b 
*c*d + 8*a^2*d^2)*x^4 + a^2*c^2 - 2*(3*a*b*c^2 - 4*a^2*c*d)*x^2 - 4*((b*c 
- 2*a*d)*x^3 - a*c*x)*sqrt(-a*b*c + a^2*d)*sqrt(d*x^2 + c))/(b^2*x^4 + 2*a 
*b*x^2 + a^2)))/(b^2*d), 1/4*(2*sqrt(d*x^2 + c)*b*d*x - 2*(b*c - 2*a*d)*sq 
rt(-d)*arctan(sqrt(-d)*x/sqrt(d*x^2 + c)) + sqrt(-a*b*c + a^2*d)*d*log(((b 
^2*c^2 - 8*a*b*c*d + 8*a^2*d^2)*x^4 + a^2*c^2 - 2*(3*a*b*c^2 - 4*a^2*c*d)* 
x^2 - 4*((b*c - 2*a*d)*x^3 - a*c*x)*sqrt(-a*b*c + a^2*d)*sqrt(d*x^2 + c))/ 
(b^2*x^4 + 2*a*b*x^2 + a^2)))/(b^2*d), 1/4*(2*sqrt(d*x^2 + c)*b*d*x - 2*sq 
rt(a*b*c - a^2*d)*d*arctan(1/2*sqrt(a*b*c - a^2*d)*((b*c - 2*a*d)*x^2 - a* 
c)*sqrt(d*x^2 + c)/((a*b*c*d - a^2*d^2)*x^3 + (a*b*c^2 - a^2*c*d)*x)) - (b 
*c - 2*a*d)*sqrt(d)*log(-2*d*x^2 + 2*sqrt(d*x^2 + c)*sqrt(d)*x - c))/(b^2* 
d), 1/2*(sqrt(d*x^2 + c)*b*d*x - sqrt(a*b*c - a^2*d)*d*arctan(1/2*sqrt(a*b 
*c - a^2*d)*((b*c - 2*a*d)*x^2 - a*c)*sqrt(d*x^2 + c)/((a*b*c*d - a^2*d^2) 
*x^3 + (a*b*c^2 - a^2*c*d)*x)) - (b*c - 2*a*d)*sqrt(-d)*arctan(sqrt(-d)*x/ 
sqrt(d*x^2 + c)))/(b^2*d)]
 

Sympy [F]

\[ \int \frac {x^2 \sqrt {c+d x^2}}{a+b x^2} \, dx=\int \frac {x^{2} \sqrt {c + d x^{2}}}{a + b x^{2}}\, dx \] Input:

integrate(x**2*(d*x**2+c)**(1/2)/(b*x**2+a),x)
 

Output:

Integral(x**2*sqrt(c + d*x**2)/(a + b*x**2), x)
 

Maxima [F]

\[ \int \frac {x^2 \sqrt {c+d x^2}}{a+b x^2} \, dx=\int { \frac {\sqrt {d x^{2} + c} x^{2}}{b x^{2} + a} \,d x } \] Input:

integrate(x^2*(d*x^2+c)^(1/2)/(b*x^2+a),x, algorithm="maxima")
 

Output:

integrate(sqrt(d*x^2 + c)*x^2/(b*x^2 + a), x)
 

Giac [F(-2)]

Exception generated. \[ \int \frac {x^2 \sqrt {c+d x^2}}{a+b x^2} \, dx=\text {Exception raised: TypeError} \] Input:

integrate(x^2*(d*x^2+c)^(1/2)/(b*x^2+a),x, algorithm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:index.cc index_m i_lex_is_greater E 
rror: Bad Argument Value
 

Mupad [F(-1)]

Timed out. \[ \int \frac {x^2 \sqrt {c+d x^2}}{a+b x^2} \, dx=\int \frac {x^2\,\sqrt {d\,x^2+c}}{b\,x^2+a} \,d x \] Input:

int((x^2*(c + d*x^2)^(1/2))/(a + b*x^2),x)
 

Output:

int((x^2*(c + d*x^2)^(1/2))/(a + b*x^2), x)
 

Reduce [B] (verification not implemented)

Time = 0.23 (sec) , antiderivative size = 240, normalized size of antiderivative = 2.14 \[ \int \frac {x^2 \sqrt {c+d x^2}}{a+b x^2} \, dx=\frac {\sqrt {a}\, \sqrt {a d -b c}\, \mathrm {log}\left (-\sqrt {2 \sqrt {d}\, \sqrt {a}\, \sqrt {a d -b c}-2 a d +b c}+\sqrt {b}\, \sqrt {d \,x^{2}+c}+\sqrt {d}\, \sqrt {b}\, x \right ) d +\sqrt {a}\, \sqrt {a d -b c}\, \mathrm {log}\left (\sqrt {2 \sqrt {d}\, \sqrt {a}\, \sqrt {a d -b c}-2 a d +b c}+\sqrt {b}\, \sqrt {d \,x^{2}+c}+\sqrt {d}\, \sqrt {b}\, x \right ) d -\sqrt {a}\, \sqrt {a d -b c}\, \mathrm {log}\left (2 \sqrt {d}\, \sqrt {a}\, \sqrt {a d -b c}+2 \sqrt {d}\, \sqrt {d \,x^{2}+c}\, b x +2 a d +2 b d \,x^{2}\right ) d +\sqrt {d \,x^{2}+c}\, b d x -2 \sqrt {d}\, \mathrm {log}\left (\frac {\sqrt {d \,x^{2}+c}+\sqrt {d}\, x}{\sqrt {c}}\right ) a d +\sqrt {d}\, \mathrm {log}\left (\frac {\sqrt {d \,x^{2}+c}+\sqrt {d}\, x}{\sqrt {c}}\right ) b c}{2 b^{2} d} \] Input:

int(x^2*(d*x^2+c)^(1/2)/(b*x^2+a),x)
 

Output:

(sqrt(a)*sqrt(a*d - b*c)*log( - sqrt(2*sqrt(d)*sqrt(a)*sqrt(a*d - b*c) - 2 
*a*d + b*c) + sqrt(b)*sqrt(c + d*x**2) + sqrt(d)*sqrt(b)*x)*d + sqrt(a)*sq 
rt(a*d - b*c)*log(sqrt(2*sqrt(d)*sqrt(a)*sqrt(a*d - b*c) - 2*a*d + b*c) + 
sqrt(b)*sqrt(c + d*x**2) + sqrt(d)*sqrt(b)*x)*d - sqrt(a)*sqrt(a*d - b*c)* 
log(2*sqrt(d)*sqrt(a)*sqrt(a*d - b*c) + 2*sqrt(d)*sqrt(c + d*x**2)*b*x + 2 
*a*d + 2*b*d*x**2)*d + sqrt(c + d*x**2)*b*d*x - 2*sqrt(d)*log((sqrt(c + d* 
x**2) + sqrt(d)*x)/sqrt(c))*a*d + sqrt(d)*log((sqrt(c + d*x**2) + sqrt(d)* 
x)/sqrt(c))*b*c)/(2*b**2*d)