\(\int \frac {\sqrt {a+b x^2} \sqrt {c+d x^2}}{e+f x^2} \, dx\) [94]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [F(-1)]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 32, antiderivative size = 322 \[ \int \frac {\sqrt {a+b x^2} \sqrt {c+d x^2}}{e+f x^2} \, dx=\frac {b x \sqrt {c+d x^2}}{f \sqrt {a+b x^2}}-\frac {\sqrt {a} \sqrt {b} \sqrt {c+d x^2} E\left (\arctan \left (\frac {\sqrt {b} x}{\sqrt {a}}\right )|1-\frac {a d}{b c}\right )}{f \sqrt {a+b x^2} \sqrt {\frac {a \left (c+d x^2\right )}{c \left (a+b x^2\right )}}}+\frac {a^{3/2} d \sqrt {c+d x^2} \operatorname {EllipticF}\left (\arctan \left (\frac {\sqrt {b} x}{\sqrt {a}}\right ),1-\frac {a d}{b c}\right )}{\sqrt {b} c f \sqrt {a+b x^2} \sqrt {\frac {a \left (c+d x^2\right )}{c \left (a+b x^2\right )}}}-\frac {a^{3/2} (d e-c f) \sqrt {c+d x^2} \operatorname {EllipticPi}\left (1-\frac {a f}{b e},\arctan \left (\frac {\sqrt {b} x}{\sqrt {a}}\right ),1-\frac {a d}{b c}\right )}{\sqrt {b} c e f \sqrt {a+b x^2} \sqrt {\frac {a \left (c+d x^2\right )}{c \left (a+b x^2\right )}}} \] Output:

b*x*(d*x^2+c)^(1/2)/f/(b*x^2+a)^(1/2)-a^(1/2)*b^(1/2)*(d*x^2+c)^(1/2)*Elli 
pticE(b^(1/2)*x/a^(1/2)/(1+b*x^2/a)^(1/2),(1-a*d/b/c)^(1/2))/f/(b*x^2+a)^( 
1/2)/(a*(d*x^2+c)/c/(b*x^2+a))^(1/2)+a^(3/2)*d*(d*x^2+c)^(1/2)*InverseJaco 
biAM(arctan(b^(1/2)*x/a^(1/2)),(1-a*d/b/c)^(1/2))/b^(1/2)/c/f/(b*x^2+a)^(1 
/2)/(a*(d*x^2+c)/c/(b*x^2+a))^(1/2)-a^(3/2)*(-c*f+d*e)*(d*x^2+c)^(1/2)*Ell 
ipticPi(b^(1/2)*x/a^(1/2)/(1+b*x^2/a)^(1/2),1-a*f/b/e,(1-a*d/b/c)^(1/2))/b 
^(1/2)/c/e/f/(b*x^2+a)^(1/2)/(a*(d*x^2+c)/c/(b*x^2+a))^(1/2)
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 2.38 (sec) , antiderivative size = 185, normalized size of antiderivative = 0.57 \[ \int \frac {\sqrt {a+b x^2} \sqrt {c+d x^2}}{e+f x^2} \, dx=-\frac {i \sqrt {1+\frac {b x^2}{a}} \sqrt {1+\frac {d x^2}{c}} \left (b c e f E\left (i \text {arcsinh}\left (\sqrt {\frac {b}{a}} x\right )|\frac {a d}{b c}\right )-(b e-a f) \left (d e \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {\frac {b}{a}} x\right ),\frac {a d}{b c}\right )+(-d e+c f) \operatorname {EllipticPi}\left (\frac {a f}{b e},i \text {arcsinh}\left (\sqrt {\frac {b}{a}} x\right ),\frac {a d}{b c}\right )\right )\right )}{\sqrt {\frac {b}{a}} e f^2 \sqrt {a+b x^2} \sqrt {c+d x^2}} \] Input:

Integrate[(Sqrt[a + b*x^2]*Sqrt[c + d*x^2])/(e + f*x^2),x]
 

Output:

((-I)*Sqrt[1 + (b*x^2)/a]*Sqrt[1 + (d*x^2)/c]*(b*c*e*f*EllipticE[I*ArcSinh 
[Sqrt[b/a]*x], (a*d)/(b*c)] - (b*e - a*f)*(d*e*EllipticF[I*ArcSinh[Sqrt[b/ 
a]*x], (a*d)/(b*c)] + (-(d*e) + c*f)*EllipticPi[(a*f)/(b*e), I*ArcSinh[Sqr 
t[b/a]*x], (a*d)/(b*c)])))/(Sqrt[b/a]*e*f^2*Sqrt[a + b*x^2]*Sqrt[c + d*x^2 
])
 

Rubi [A] (verified)

Time = 0.45 (sec) , antiderivative size = 326, normalized size of antiderivative = 1.01, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.188, Rules used = {410, 324, 320, 388, 313, 414}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {a+b x^2} \sqrt {c+d x^2}}{e+f x^2} \, dx\)

\(\Big \downarrow \) 410

\(\displaystyle \frac {b \int \frac {\sqrt {d x^2+c}}{\sqrt {b x^2+a}}dx}{f}-\frac {(b e-a f) \int \frac {\sqrt {d x^2+c}}{\sqrt {b x^2+a} \left (f x^2+e\right )}dx}{f}\)

\(\Big \downarrow \) 324

\(\displaystyle \frac {b \left (c \int \frac {1}{\sqrt {b x^2+a} \sqrt {d x^2+c}}dx+d \int \frac {x^2}{\sqrt {b x^2+a} \sqrt {d x^2+c}}dx\right )}{f}-\frac {(b e-a f) \int \frac {\sqrt {d x^2+c}}{\sqrt {b x^2+a} \left (f x^2+e\right )}dx}{f}\)

\(\Big \downarrow \) 320

\(\displaystyle \frac {b \left (d \int \frac {x^2}{\sqrt {b x^2+a} \sqrt {d x^2+c}}dx+\frac {c^{3/2} \sqrt {a+b x^2} \operatorname {EllipticF}\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right ),1-\frac {b c}{a d}\right )}{a \sqrt {d} \sqrt {c+d x^2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}\right )}{f}-\frac {(b e-a f) \int \frac {\sqrt {d x^2+c}}{\sqrt {b x^2+a} \left (f x^2+e\right )}dx}{f}\)

\(\Big \downarrow \) 388

\(\displaystyle \frac {b \left (d \left (\frac {x \sqrt {a+b x^2}}{b \sqrt {c+d x^2}}-\frac {c \int \frac {\sqrt {b x^2+a}}{\left (d x^2+c\right )^{3/2}}dx}{b}\right )+\frac {c^{3/2} \sqrt {a+b x^2} \operatorname {EllipticF}\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right ),1-\frac {b c}{a d}\right )}{a \sqrt {d} \sqrt {c+d x^2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}\right )}{f}-\frac {(b e-a f) \int \frac {\sqrt {d x^2+c}}{\sqrt {b x^2+a} \left (f x^2+e\right )}dx}{f}\)

\(\Big \downarrow \) 313

\(\displaystyle \frac {b \left (\frac {c^{3/2} \sqrt {a+b x^2} \operatorname {EllipticF}\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right ),1-\frac {b c}{a d}\right )}{a \sqrt {d} \sqrt {c+d x^2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}+d \left (\frac {x \sqrt {a+b x^2}}{b \sqrt {c+d x^2}}-\frac {\sqrt {c} \sqrt {a+b x^2} E\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{b \sqrt {d} \sqrt {c+d x^2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}\right )\right )}{f}-\frac {(b e-a f) \int \frac {\sqrt {d x^2+c}}{\sqrt {b x^2+a} \left (f x^2+e\right )}dx}{f}\)

\(\Big \downarrow \) 414

\(\displaystyle \frac {b \left (\frac {c^{3/2} \sqrt {a+b x^2} \operatorname {EllipticF}\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right ),1-\frac {b c}{a d}\right )}{a \sqrt {d} \sqrt {c+d x^2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}+d \left (\frac {x \sqrt {a+b x^2}}{b \sqrt {c+d x^2}}-\frac {\sqrt {c} \sqrt {a+b x^2} E\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{b \sqrt {d} \sqrt {c+d x^2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}\right )\right )}{f}-\frac {c^{3/2} \sqrt {a+b x^2} (b e-a f) \operatorname {EllipticPi}\left (1-\frac {c f}{d e},\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right ),1-\frac {b c}{a d}\right )}{a \sqrt {d} e f \sqrt {c+d x^2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}\)

Input:

Int[(Sqrt[a + b*x^2]*Sqrt[c + d*x^2])/(e + f*x^2),x]
 

Output:

(b*(d*((x*Sqrt[a + b*x^2])/(b*Sqrt[c + d*x^2]) - (Sqrt[c]*Sqrt[a + b*x^2]* 
EllipticE[ArcTan[(Sqrt[d]*x)/Sqrt[c]], 1 - (b*c)/(a*d)])/(b*Sqrt[d]*Sqrt[( 
c*(a + b*x^2))/(a*(c + d*x^2))]*Sqrt[c + d*x^2])) + (c^(3/2)*Sqrt[a + b*x^ 
2]*EllipticF[ArcTan[(Sqrt[d]*x)/Sqrt[c]], 1 - (b*c)/(a*d)])/(a*Sqrt[d]*Sqr 
t[(c*(a + b*x^2))/(a*(c + d*x^2))]*Sqrt[c + d*x^2])))/f - (c^(3/2)*(b*e - 
a*f)*Sqrt[a + b*x^2]*EllipticPi[1 - (c*f)/(d*e), ArcTan[(Sqrt[d]*x)/Sqrt[c 
]], 1 - (b*c)/(a*d)])/(a*Sqrt[d]*e*f*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))] 
*Sqrt[c + d*x^2])
 

Defintions of rubi rules used

rule 313
Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Sim 
p[(Sqrt[a + b*x^2]/(c*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c 
+ d*x^2)))]))*EllipticE[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /; FreeQ 
[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]
 

rule 320
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> S 
imp[(Sqrt[a + b*x^2]/(a*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*( 
c + d*x^2)))]))*EllipticF[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /; Fre 
eQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]
 

rule 324
Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[ 
a   Int[1/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]), x], x] + Simp[b   Int[x^2/(Sqr 
t[a + b*x^2]*Sqrt[c + d*x^2]), x], x] /; FreeQ[{a, b, c, d}, x] && PosQ[d/c 
] && PosQ[b/a]
 

rule 388
Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] 
 :> Simp[x*(Sqrt[a + b*x^2]/(b*Sqrt[c + d*x^2])), x] - Simp[c/b   Int[Sqrt[ 
a + b*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - 
 a*d, 0] && PosQ[b/a] && PosQ[d/c] &&  !SimplerSqrtQ[b/a, d/c]
 

rule 410
Int[(Sqrt[(c_) + (d_.)*(x_)^2]*Sqrt[(e_) + (f_.)*(x_)^2])/((a_) + (b_.)*(x_ 
)^2), x_Symbol] :> Simp[d/b   Int[Sqrt[e + f*x^2]/Sqrt[c + d*x^2], x], x] + 
 Simp[(b*c - a*d)/b   Int[Sqrt[e + f*x^2]/((a + b*x^2)*Sqrt[c + d*x^2]), x] 
, x] /; FreeQ[{a, b, c, d, e, f}, x] &&  !SimplerSqrtQ[-f/e, -d/c]
 

rule 414
Int[Sqrt[(c_) + (d_.)*(x_)^2]/(((a_) + (b_.)*(x_)^2)*Sqrt[(e_) + (f_.)*(x_) 
^2]), x_Symbol] :> Simp[c*(Sqrt[e + f*x^2]/(a*e*Rt[d/c, 2]*Sqrt[c + d*x^2]* 
Sqrt[c*((e + f*x^2)/(e*(c + d*x^2)))]))*EllipticPi[1 - b*(c/(a*d)), ArcTan[ 
Rt[d/c, 2]*x], 1 - c*(f/(d*e))], x] /; FreeQ[{a, b, c, d, e, f}, x] && PosQ 
[d/c]
 
Maple [A] (verified)

Time = 1.23 (sec) , antiderivative size = 340, normalized size of antiderivative = 1.06

method result size
default \(\frac {\sqrt {b \,x^{2}+a}\, \sqrt {x^{2} d +c}\, \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {x^{2} d +c}{c}}\, \left (\operatorname {EllipticF}\left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) a d e f -\operatorname {EllipticF}\left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) b d \,e^{2}+\operatorname {EllipticE}\left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) b c e f +\operatorname {EllipticPi}\left (x \sqrt {-\frac {b}{a}}, \frac {a f}{b e}, \frac {\sqrt {-\frac {d}{c}}}{\sqrt {-\frac {b}{a}}}\right ) a c \,f^{2}-\operatorname {EllipticPi}\left (x \sqrt {-\frac {b}{a}}, \frac {a f}{b e}, \frac {\sqrt {-\frac {d}{c}}}{\sqrt {-\frac {b}{a}}}\right ) a d e f -\operatorname {EllipticPi}\left (x \sqrt {-\frac {b}{a}}, \frac {a f}{b e}, \frac {\sqrt {-\frac {d}{c}}}{\sqrt {-\frac {b}{a}}}\right ) b c e f +\operatorname {EllipticPi}\left (x \sqrt {-\frac {b}{a}}, \frac {a f}{b e}, \frac {\sqrt {-\frac {d}{c}}}{\sqrt {-\frac {b}{a}}}\right ) b d \,e^{2}\right )}{\left (b d \,x^{4}+a d \,x^{2}+x^{2} b c +a c \right ) f^{2} \sqrt {-\frac {b}{a}}\, e}\) \(340\)
elliptic \(\frac {\sqrt {\left (b \,x^{2}+a \right ) \left (x^{2} d +c \right )}\, \left (\frac {\sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \operatorname {EllipticF}\left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right ) a d}{f \sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+x^{2} b c +a c}}-\frac {\sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \operatorname {EllipticF}\left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right ) b d e}{f^{2} \sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+x^{2} b c +a c}}+\frac {b c \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \operatorname {EllipticE}\left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )}{f \sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+x^{2} b c +a c}}+\frac {\sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \operatorname {EllipticPi}\left (x \sqrt {-\frac {b}{a}}, \frac {a f}{b e}, \frac {\sqrt {-\frac {d}{c}}}{\sqrt {-\frac {b}{a}}}\right ) a c}{e \sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+x^{2} b c +a c}}-\frac {\sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \operatorname {EllipticPi}\left (x \sqrt {-\frac {b}{a}}, \frac {a f}{b e}, \frac {\sqrt {-\frac {d}{c}}}{\sqrt {-\frac {b}{a}}}\right ) a d}{f \sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+x^{2} b c +a c}}-\frac {\sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \operatorname {EllipticPi}\left (x \sqrt {-\frac {b}{a}}, \frac {a f}{b e}, \frac {\sqrt {-\frac {d}{c}}}{\sqrt {-\frac {b}{a}}}\right ) b c}{f \sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+x^{2} b c +a c}}+\frac {e \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \operatorname {EllipticPi}\left (x \sqrt {-\frac {b}{a}}, \frac {a f}{b e}, \frac {\sqrt {-\frac {d}{c}}}{\sqrt {-\frac {b}{a}}}\right ) b d}{f^{2} \sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+x^{2} b c +a c}}\right )}{\sqrt {b \,x^{2}+a}\, \sqrt {x^{2} d +c}}\) \(712\)

Input:

int((b*x^2+a)^(1/2)*(d*x^2+c)^(1/2)/(f*x^2+e),x,method=_RETURNVERBOSE)
 

Output:

(b*x^2+a)^(1/2)*(d*x^2+c)^(1/2)*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*(E 
llipticF(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*a*d*e*f-EllipticF(x*(-b/a)^(1/2), 
(a*d/b/c)^(1/2))*b*d*e^2+EllipticE(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*b*c*e*f 
+EllipticPi(x*(-b/a)^(1/2),a*f/b/e,(-1/c*d)^(1/2)/(-b/a)^(1/2))*a*c*f^2-El 
lipticPi(x*(-b/a)^(1/2),a*f/b/e,(-1/c*d)^(1/2)/(-b/a)^(1/2))*a*d*e*f-Ellip 
ticPi(x*(-b/a)^(1/2),a*f/b/e,(-1/c*d)^(1/2)/(-b/a)^(1/2))*b*c*e*f+Elliptic 
Pi(x*(-b/a)^(1/2),a*f/b/e,(-1/c*d)^(1/2)/(-b/a)^(1/2))*b*d*e^2)/(b*d*x^4+a 
*d*x^2+b*c*x^2+a*c)/f^2/(-b/a)^(1/2)/e
 

Fricas [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+b x^2} \sqrt {c+d x^2}}{e+f x^2} \, dx=\text {Timed out} \] Input:

integrate((b*x^2+a)^(1/2)*(d*x^2+c)^(1/2)/(f*x^2+e),x, algorithm="fricas")
                                                                                    
                                                                                    
 

Output:

Timed out
 

Sympy [F]

\[ \int \frac {\sqrt {a+b x^2} \sqrt {c+d x^2}}{e+f x^2} \, dx=\int \frac {\sqrt {a + b x^{2}} \sqrt {c + d x^{2}}}{e + f x^{2}}\, dx \] Input:

integrate((b*x**2+a)**(1/2)*(d*x**2+c)**(1/2)/(f*x**2+e),x)
 

Output:

Integral(sqrt(a + b*x**2)*sqrt(c + d*x**2)/(e + f*x**2), x)
 

Maxima [F]

\[ \int \frac {\sqrt {a+b x^2} \sqrt {c+d x^2}}{e+f x^2} \, dx=\int { \frac {\sqrt {b x^{2} + a} \sqrt {d x^{2} + c}}{f x^{2} + e} \,d x } \] Input:

integrate((b*x^2+a)^(1/2)*(d*x^2+c)^(1/2)/(f*x^2+e),x, algorithm="maxima")
 

Output:

integrate(sqrt(b*x^2 + a)*sqrt(d*x^2 + c)/(f*x^2 + e), x)
 

Giac [F]

\[ \int \frac {\sqrt {a+b x^2} \sqrt {c+d x^2}}{e+f x^2} \, dx=\int { \frac {\sqrt {b x^{2} + a} \sqrt {d x^{2} + c}}{f x^{2} + e} \,d x } \] Input:

integrate((b*x^2+a)^(1/2)*(d*x^2+c)^(1/2)/(f*x^2+e),x, algorithm="giac")
 

Output:

integrate(sqrt(b*x^2 + a)*sqrt(d*x^2 + c)/(f*x^2 + e), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+b x^2} \sqrt {c+d x^2}}{e+f x^2} \, dx=\int \frac {\sqrt {b\,x^2+a}\,\sqrt {d\,x^2+c}}{f\,x^2+e} \,d x \] Input:

int(((a + b*x^2)^(1/2)*(c + d*x^2)^(1/2))/(e + f*x^2),x)
 

Output:

int(((a + b*x^2)^(1/2)*(c + d*x^2)^(1/2))/(e + f*x^2), x)
 

Reduce [F]

\[ \int \frac {\sqrt {a+b x^2} \sqrt {c+d x^2}}{e+f x^2} \, dx=\int \frac {\sqrt {d \,x^{2}+c}\, \sqrt {b \,x^{2}+a}}{f \,x^{2}+e}d x \] Input:

int((b*x^2+a)^(1/2)*(d*x^2+c)^(1/2)/(f*x^2+e),x)
 

Output:

int((sqrt(c + d*x**2)*sqrt(a + b*x**2))/(e + f*x**2),x)