\(\int \frac {(a+b x^2)^{3/2}}{\sqrt {c+d x^2} (e+f x^2)} \, dx\) [111]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [F(-1)]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 32, antiderivative size = 363 \[ \int \frac {\left (a+b x^2\right )^{3/2}}{\sqrt {c+d x^2} \left (e+f x^2\right )} \, dx=\frac {b x \sqrt {a+b x^2}}{f \sqrt {c+d x^2}}-\frac {b \sqrt {c} \sqrt {a+b x^2} E\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{\sqrt {d} f \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {c+d x^2}}+\frac {\sqrt {c} \left (b^2 c e-2 a b c f+a^2 d f\right ) \sqrt {a+b x^2} \operatorname {EllipticF}\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right ),1-\frac {b c}{a d}\right )}{a \sqrt {d} f (d e-c f) \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {c+d x^2}}-\frac {c^{3/2} (b e-a f)^2 \sqrt {a+b x^2} \operatorname {EllipticPi}\left (1-\frac {c f}{d e},\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right ),1-\frac {b c}{a d}\right )}{a \sqrt {d} e f (d e-c f) \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {c+d x^2}} \] Output:

b*x*(b*x^2+a)^(1/2)/f/(d*x^2+c)^(1/2)-b*c^(1/2)*(b*x^2+a)^(1/2)*EllipticE( 
d^(1/2)*x/c^(1/2)/(1+d*x^2/c)^(1/2),(1-b*c/a/d)^(1/2))/d^(1/2)/f/(c*(b*x^2 
+a)/a/(d*x^2+c))^(1/2)/(d*x^2+c)^(1/2)+c^(1/2)*(a^2*d*f-2*a*b*c*f+b^2*c*e) 
*(b*x^2+a)^(1/2)*InverseJacobiAM(arctan(d^(1/2)*x/c^(1/2)),(1-b*c/a/d)^(1/ 
2))/a/d^(1/2)/f/(-c*f+d*e)/(c*(b*x^2+a)/a/(d*x^2+c))^(1/2)/(d*x^2+c)^(1/2) 
-c^(3/2)*(-a*f+b*e)^2*(b*x^2+a)^(1/2)*EllipticPi(d^(1/2)*x/c^(1/2)/(1+d*x^ 
2/c)^(1/2),1-c*f/d/e,(1-b*c/a/d)^(1/2))/a/d^(1/2)/e/f/(-c*f+d*e)/(c*(b*x^2 
+a)/a/(d*x^2+c))^(1/2)/(d*x^2+c)^(1/2)
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 0.16 (sec) , antiderivative size = 197, normalized size of antiderivative = 0.54 \[ \int \frac {\left (a+b x^2\right )^{3/2}}{\sqrt {c+d x^2} \left (e+f x^2\right )} \, dx=-\frac {i \sqrt {1+\frac {b x^2}{a}} \sqrt {1+\frac {d x^2}{c}} \left (b^2 c e f E\left (i \text {arcsinh}\left (\sqrt {\frac {b}{a}} x\right )|\frac {a d}{b c}\right )-b e (b d e+b c f-2 a d f) \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {\frac {b}{a}} x\right ),\frac {a d}{b c}\right )+d (b e-a f)^2 \operatorname {EllipticPi}\left (\frac {a f}{b e},i \text {arcsinh}\left (\sqrt {\frac {b}{a}} x\right ),\frac {a d}{b c}\right )\right )}{\sqrt {\frac {b}{a}} d e f^2 \sqrt {a+b x^2} \sqrt {c+d x^2}} \] Input:

Integrate[(a + b*x^2)^(3/2)/(Sqrt[c + d*x^2]*(e + f*x^2)),x]
 

Output:

((-I)*Sqrt[1 + (b*x^2)/a]*Sqrt[1 + (d*x^2)/c]*(b^2*c*e*f*EllipticE[I*ArcSi 
nh[Sqrt[b/a]*x], (a*d)/(b*c)] - b*e*(b*d*e + b*c*f - 2*a*d*f)*EllipticF[I* 
ArcSinh[Sqrt[b/a]*x], (a*d)/(b*c)] + d*(b*e - a*f)^2*EllipticPi[(a*f)/(b*e 
), I*ArcSinh[Sqrt[b/a]*x], (a*d)/(b*c)]))/(Sqrt[b/a]*d*e*f^2*Sqrt[a + b*x^ 
2]*Sqrt[c + d*x^2])
 

Rubi [A] (verified)

Time = 0.43 (sec) , antiderivative size = 323, normalized size of antiderivative = 0.89, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.188, Rules used = {420, 324, 320, 388, 313, 414}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (a+b x^2\right )^{3/2}}{\sqrt {c+d x^2} \left (e+f x^2\right )} \, dx\)

\(\Big \downarrow \) 420

\(\displaystyle \frac {b \int \frac {\sqrt {b x^2+a}}{\sqrt {d x^2+c}}dx}{f}-\frac {(b e-a f) \int \frac {\sqrt {b x^2+a}}{\sqrt {d x^2+c} \left (f x^2+e\right )}dx}{f}\)

\(\Big \downarrow \) 324

\(\displaystyle \frac {b \left (a \int \frac {1}{\sqrt {b x^2+a} \sqrt {d x^2+c}}dx+b \int \frac {x^2}{\sqrt {b x^2+a} \sqrt {d x^2+c}}dx\right )}{f}-\frac {(b e-a f) \int \frac {\sqrt {b x^2+a}}{\sqrt {d x^2+c} \left (f x^2+e\right )}dx}{f}\)

\(\Big \downarrow \) 320

\(\displaystyle \frac {b \left (b \int \frac {x^2}{\sqrt {b x^2+a} \sqrt {d x^2+c}}dx+\frac {\sqrt {c} \sqrt {a+b x^2} \operatorname {EllipticF}\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right ),1-\frac {b c}{a d}\right )}{\sqrt {d} \sqrt {c+d x^2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}\right )}{f}-\frac {(b e-a f) \int \frac {\sqrt {b x^2+a}}{\sqrt {d x^2+c} \left (f x^2+e\right )}dx}{f}\)

\(\Big \downarrow \) 388

\(\displaystyle \frac {b \left (b \left (\frac {x \sqrt {a+b x^2}}{b \sqrt {c+d x^2}}-\frac {c \int \frac {\sqrt {b x^2+a}}{\left (d x^2+c\right )^{3/2}}dx}{b}\right )+\frac {\sqrt {c} \sqrt {a+b x^2} \operatorname {EllipticF}\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right ),1-\frac {b c}{a d}\right )}{\sqrt {d} \sqrt {c+d x^2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}\right )}{f}-\frac {(b e-a f) \int \frac {\sqrt {b x^2+a}}{\sqrt {d x^2+c} \left (f x^2+e\right )}dx}{f}\)

\(\Big \downarrow \) 313

\(\displaystyle \frac {b \left (\frac {\sqrt {c} \sqrt {a+b x^2} \operatorname {EllipticF}\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right ),1-\frac {b c}{a d}\right )}{\sqrt {d} \sqrt {c+d x^2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}+b \left (\frac {x \sqrt {a+b x^2}}{b \sqrt {c+d x^2}}-\frac {\sqrt {c} \sqrt {a+b x^2} E\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{b \sqrt {d} \sqrt {c+d x^2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}\right )\right )}{f}-\frac {(b e-a f) \int \frac {\sqrt {b x^2+a}}{\sqrt {d x^2+c} \left (f x^2+e\right )}dx}{f}\)

\(\Big \downarrow \) 414

\(\displaystyle \frac {b \left (\frac {\sqrt {c} \sqrt {a+b x^2} \operatorname {EllipticF}\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right ),1-\frac {b c}{a d}\right )}{\sqrt {d} \sqrt {c+d x^2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}+b \left (\frac {x \sqrt {a+b x^2}}{b \sqrt {c+d x^2}}-\frac {\sqrt {c} \sqrt {a+b x^2} E\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{b \sqrt {d} \sqrt {c+d x^2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}\right )\right )}{f}-\frac {a^{3/2} \sqrt {c+d x^2} (b e-a f) \operatorname {EllipticPi}\left (1-\frac {a f}{b e},\arctan \left (\frac {\sqrt {b} x}{\sqrt {a}}\right ),1-\frac {a d}{b c}\right )}{\sqrt {b} c e f \sqrt {a+b x^2} \sqrt {\frac {a \left (c+d x^2\right )}{c \left (a+b x^2\right )}}}\)

Input:

Int[(a + b*x^2)^(3/2)/(Sqrt[c + d*x^2]*(e + f*x^2)),x]
 

Output:

(b*(b*((x*Sqrt[a + b*x^2])/(b*Sqrt[c + d*x^2]) - (Sqrt[c]*Sqrt[a + b*x^2]* 
EllipticE[ArcTan[(Sqrt[d]*x)/Sqrt[c]], 1 - (b*c)/(a*d)])/(b*Sqrt[d]*Sqrt[( 
c*(a + b*x^2))/(a*(c + d*x^2))]*Sqrt[c + d*x^2])) + (Sqrt[c]*Sqrt[a + b*x^ 
2]*EllipticF[ArcTan[(Sqrt[d]*x)/Sqrt[c]], 1 - (b*c)/(a*d)])/(Sqrt[d]*Sqrt[ 
(c*(a + b*x^2))/(a*(c + d*x^2))]*Sqrt[c + d*x^2])))/f - (a^(3/2)*(b*e - a* 
f)*Sqrt[c + d*x^2]*EllipticPi[1 - (a*f)/(b*e), ArcTan[(Sqrt[b]*x)/Sqrt[a]] 
, 1 - (a*d)/(b*c)])/(Sqrt[b]*c*e*f*Sqrt[a + b*x^2]*Sqrt[(a*(c + d*x^2))/(c 
*(a + b*x^2))])
 

Defintions of rubi rules used

rule 313
Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Sim 
p[(Sqrt[a + b*x^2]/(c*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c 
+ d*x^2)))]))*EllipticE[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /; FreeQ 
[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]
 

rule 320
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> S 
imp[(Sqrt[a + b*x^2]/(a*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*( 
c + d*x^2)))]))*EllipticF[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /; Fre 
eQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]
 

rule 324
Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[ 
a   Int[1/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]), x], x] + Simp[b   Int[x^2/(Sqr 
t[a + b*x^2]*Sqrt[c + d*x^2]), x], x] /; FreeQ[{a, b, c, d}, x] && PosQ[d/c 
] && PosQ[b/a]
 

rule 388
Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] 
 :> Simp[x*(Sqrt[a + b*x^2]/(b*Sqrt[c + d*x^2])), x] - Simp[c/b   Int[Sqrt[ 
a + b*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - 
 a*d, 0] && PosQ[b/a] && PosQ[d/c] &&  !SimplerSqrtQ[b/a, d/c]
 

rule 414
Int[Sqrt[(c_) + (d_.)*(x_)^2]/(((a_) + (b_.)*(x_)^2)*Sqrt[(e_) + (f_.)*(x_) 
^2]), x_Symbol] :> Simp[c*(Sqrt[e + f*x^2]/(a*e*Rt[d/c, 2]*Sqrt[c + d*x^2]* 
Sqrt[c*((e + f*x^2)/(e*(c + d*x^2)))]))*EllipticPi[1 - b*(c/(a*d)), ArcTan[ 
Rt[d/c, 2]*x], 1 - c*(f/(d*e))], x] /; FreeQ[{a, b, c, d, e, f}, x] && PosQ 
[d/c]
 

rule 420
Int[(((c_) + (d_.)*(x_)^2)^(q_)*((e_) + (f_.)*(x_)^2)^(r_))/((a_) + (b_.)*( 
x_)^2), x_Symbol] :> Simp[d/b   Int[(c + d*x^2)^(q - 1)*(e + f*x^2)^r, x], 
x] + Simp[(b*c - a*d)/b   Int[(c + d*x^2)^(q - 1)*((e + f*x^2)^r/(a + b*x^2 
)), x], x] /; FreeQ[{a, b, c, d, e, f, r}, x] && GtQ[q, 1]
 
Maple [A] (verified)

Time = 4.31 (sec) , antiderivative size = 341, normalized size of antiderivative = 0.94

method result size
default \(\frac {\left (\operatorname {EllipticE}\left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) b^{2} c e f +\operatorname {EllipticPi}\left (x \sqrt {-\frac {b}{a}}, \frac {a f}{b e}, \frac {\sqrt {-\frac {d}{c}}}{\sqrt {-\frac {b}{a}}}\right ) a^{2} d \,f^{2}-2 \operatorname {EllipticPi}\left (x \sqrt {-\frac {b}{a}}, \frac {a f}{b e}, \frac {\sqrt {-\frac {d}{c}}}{\sqrt {-\frac {b}{a}}}\right ) a b d e f +\operatorname {EllipticPi}\left (x \sqrt {-\frac {b}{a}}, \frac {a f}{b e}, \frac {\sqrt {-\frac {d}{c}}}{\sqrt {-\frac {b}{a}}}\right ) b^{2} d \,e^{2}+2 \operatorname {EllipticF}\left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) a b d e f -\operatorname {EllipticF}\left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) b^{2} c e f -\operatorname {EllipticF}\left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) b^{2} d \,e^{2}\right ) \sqrt {\frac {x^{2} d +c}{c}}\, \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {x^{2} d +c}\, \sqrt {b \,x^{2}+a}}{e \,f^{2} d \sqrt {-\frac {b}{a}}\, \left (b d \,x^{4}+a d \,x^{2}+x^{2} b c +a c \right )}\) \(341\)
elliptic \(\frac {\sqrt {\left (b \,x^{2}+a \right ) \left (x^{2} d +c \right )}\, \left (\frac {2 b \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \operatorname {EllipticF}\left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right ) a}{f \sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+x^{2} b c +a c}}-\frac {b^{2} \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \operatorname {EllipticF}\left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right ) e}{f^{2} \sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+x^{2} b c +a c}}-\frac {b^{2} c \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \operatorname {EllipticF}\left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )}{f \sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+x^{2} b c +a c}\, d}+\frac {b^{2} c \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \operatorname {EllipticE}\left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )}{f \sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+x^{2} b c +a c}\, d}+\frac {\sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \operatorname {EllipticPi}\left (x \sqrt {-\frac {b}{a}}, \frac {a f}{b e}, \frac {\sqrt {-\frac {d}{c}}}{\sqrt {-\frac {b}{a}}}\right ) a^{2}}{e \sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+x^{2} b c +a c}}-\frac {2 \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \operatorname {EllipticPi}\left (x \sqrt {-\frac {b}{a}}, \frac {a f}{b e}, \frac {\sqrt {-\frac {d}{c}}}{\sqrt {-\frac {b}{a}}}\right ) a b}{f \sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+x^{2} b c +a c}}+\frac {e \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \operatorname {EllipticPi}\left (x \sqrt {-\frac {b}{a}}, \frac {a f}{b e}, \frac {\sqrt {-\frac {d}{c}}}{\sqrt {-\frac {b}{a}}}\right ) b^{2}}{f^{2} \sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+x^{2} b c +a c}}\right )}{\sqrt {b \,x^{2}+a}\, \sqrt {x^{2} d +c}}\) \(718\)

Input:

int((b*x^2+a)^(3/2)/(d*x^2+c)^(1/2)/(f*x^2+e),x,method=_RETURNVERBOSE)
 

Output:

(EllipticE(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*b^2*c*e*f+EllipticPi(x*(-b/a)^( 
1/2),a*f/b/e,(-1/c*d)^(1/2)/(-b/a)^(1/2))*a^2*d*f^2-2*EllipticPi(x*(-b/a)^ 
(1/2),a*f/b/e,(-1/c*d)^(1/2)/(-b/a)^(1/2))*a*b*d*e*f+EllipticPi(x*(-b/a)^( 
1/2),a*f/b/e,(-1/c*d)^(1/2)/(-b/a)^(1/2))*b^2*d*e^2+2*EllipticF(x*(-b/a)^( 
1/2),(a*d/b/c)^(1/2))*a*b*d*e*f-EllipticF(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))* 
b^2*c*e*f-EllipticF(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*b^2*d*e^2)*((d*x^2+c)/ 
c)^(1/2)*((b*x^2+a)/a)^(1/2)*(d*x^2+c)^(1/2)*(b*x^2+a)^(1/2)/e/f^2/d/(-b/a 
)^(1/2)/(b*d*x^4+a*d*x^2+b*c*x^2+a*c)
 

Fricas [F(-1)]

Timed out. \[ \int \frac {\left (a+b x^2\right )^{3/2}}{\sqrt {c+d x^2} \left (e+f x^2\right )} \, dx=\text {Timed out} \] Input:

integrate((b*x^2+a)^(3/2)/(d*x^2+c)^(1/2)/(f*x^2+e),x, algorithm="fricas")
                                                                                    
                                                                                    
 

Output:

Timed out
 

Sympy [F]

\[ \int \frac {\left (a+b x^2\right )^{3/2}}{\sqrt {c+d x^2} \left (e+f x^2\right )} \, dx=\int \frac {\left (a + b x^{2}\right )^{\frac {3}{2}}}{\sqrt {c + d x^{2}} \left (e + f x^{2}\right )}\, dx \] Input:

integrate((b*x**2+a)**(3/2)/(d*x**2+c)**(1/2)/(f*x**2+e),x)
 

Output:

Integral((a + b*x**2)**(3/2)/(sqrt(c + d*x**2)*(e + f*x**2)), x)
 

Maxima [F]

\[ \int \frac {\left (a+b x^2\right )^{3/2}}{\sqrt {c+d x^2} \left (e+f x^2\right )} \, dx=\int { \frac {{\left (b x^{2} + a\right )}^{\frac {3}{2}}}{\sqrt {d x^{2} + c} {\left (f x^{2} + e\right )}} \,d x } \] Input:

integrate((b*x^2+a)^(3/2)/(d*x^2+c)^(1/2)/(f*x^2+e),x, algorithm="maxima")
 

Output:

integrate((b*x^2 + a)^(3/2)/(sqrt(d*x^2 + c)*(f*x^2 + e)), x)
 

Giac [F]

\[ \int \frac {\left (a+b x^2\right )^{3/2}}{\sqrt {c+d x^2} \left (e+f x^2\right )} \, dx=\int { \frac {{\left (b x^{2} + a\right )}^{\frac {3}{2}}}{\sqrt {d x^{2} + c} {\left (f x^{2} + e\right )}} \,d x } \] Input:

integrate((b*x^2+a)^(3/2)/(d*x^2+c)^(1/2)/(f*x^2+e),x, algorithm="giac")
 

Output:

integrate((b*x^2 + a)^(3/2)/(sqrt(d*x^2 + c)*(f*x^2 + e)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (a+b x^2\right )^{3/2}}{\sqrt {c+d x^2} \left (e+f x^2\right )} \, dx=\int \frac {{\left (b\,x^2+a\right )}^{3/2}}{\sqrt {d\,x^2+c}\,\left (f\,x^2+e\right )} \,d x \] Input:

int((a + b*x^2)^(3/2)/((c + d*x^2)^(1/2)*(e + f*x^2)),x)
 

Output:

int((a + b*x^2)^(3/2)/((c + d*x^2)^(1/2)*(e + f*x^2)), x)
 

Reduce [F]

\[ \int \frac {\left (a+b x^2\right )^{3/2}}{\sqrt {c+d x^2} \left (e+f x^2\right )} \, dx=\left (\int \frac {\sqrt {d \,x^{2}+c}\, \sqrt {b \,x^{2}+a}\, x^{2}}{d f \,x^{4}+c f \,x^{2}+d e \,x^{2}+c e}d x \right ) b +\left (\int \frac {\sqrt {d \,x^{2}+c}\, \sqrt {b \,x^{2}+a}}{d f \,x^{4}+c f \,x^{2}+d e \,x^{2}+c e}d x \right ) a \] Input:

int((b*x^2+a)^(3/2)/(d*x^2+c)^(1/2)/(f*x^2+e),x)
 

Output:

int((sqrt(c + d*x**2)*sqrt(a + b*x**2)*x**2)/(c*e + c*f*x**2 + d*e*x**2 + 
d*f*x**4),x)*b + int((sqrt(c + d*x**2)*sqrt(a + b*x**2))/(c*e + c*f*x**2 + 
 d*e*x**2 + d*f*x**4),x)*a