\(\int \frac {(a+b x^2) (c+d x^2)^2}{e+f x^2} \, dx\) [210]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [B] (verification not implemented)
Maxima [F(-2)]
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 26, antiderivative size = 116 \[ \int \frac {\left (a+b x^2\right ) \left (c+d x^2\right )^2}{e+f x^2} \, dx=-\frac {\left (a d f (d e-2 c f)-b (d e-c f)^2\right ) x}{f^3}-\frac {d (b d e-2 b c f-a d f) x^3}{3 f^2}+\frac {b d^2 x^5}{5 f}-\frac {(b e-a f) (d e-c f)^2 \arctan \left (\frac {\sqrt {f} x}{\sqrt {e}}\right )}{\sqrt {e} f^{7/2}} \] Output:

-(a*d*f*(-2*c*f+d*e)-b*(-c*f+d*e)^2)*x/f^3-1/3*d*(-a*d*f-2*b*c*f+b*d*e)*x^ 
3/f^2+1/5*b*d^2*x^5/f-(-a*f+b*e)*(-c*f+d*e)^2*arctan(f^(1/2)*x/e^(1/2))/e^ 
(1/2)/f^(7/2)
 

Mathematica [A] (verified)

Time = 0.06 (sec) , antiderivative size = 115, normalized size of antiderivative = 0.99 \[ \int \frac {\left (a+b x^2\right ) \left (c+d x^2\right )^2}{e+f x^2} \, dx=\frac {\left (b (d e-c f)^2+a d f (-d e+2 c f)\right ) x}{f^3}+\frac {d (-b d e+2 b c f+a d f) x^3}{3 f^2}+\frac {b d^2 x^5}{5 f}-\frac {(b e-a f) (d e-c f)^2 \arctan \left (\frac {\sqrt {f} x}{\sqrt {e}}\right )}{\sqrt {e} f^{7/2}} \] Input:

Integrate[((a + b*x^2)*(c + d*x^2)^2)/(e + f*x^2),x]
 

Output:

((b*(d*e - c*f)^2 + a*d*f*(-(d*e) + 2*c*f))*x)/f^3 + (d*(-(b*d*e) + 2*b*c* 
f + a*d*f)*x^3)/(3*f^2) + (b*d^2*x^5)/(5*f) - ((b*e - a*f)*(d*e - c*f)^2*A 
rcTan[(Sqrt[f]*x)/Sqrt[e]])/(Sqrt[e]*f^(7/2))
 

Rubi [A] (verified)

Time = 0.38 (sec) , antiderivative size = 156, normalized size of antiderivative = 1.34, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.231, Rules used = {403, 25, 403, 25, 299, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (a+b x^2\right ) \left (c+d x^2\right )^2}{e+f x^2} \, dx\)

\(\Big \downarrow \) 403

\(\displaystyle \frac {\int -\frac {\left (d x^2+c\right ) \left ((5 b d e-4 b c f-5 a d f) x^2+c (b e-5 a f)\right )}{f x^2+e}dx}{5 f}+\frac {b x \left (c+d x^2\right )^2}{5 f}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {b x \left (c+d x^2\right )^2}{5 f}-\frac {\int \frac {\left (d x^2+c\right ) \left ((5 b d e-4 b c f-5 a d f) x^2+c (b e-5 a f)\right )}{f x^2+e}dx}{5 f}\)

\(\Big \downarrow \) 403

\(\displaystyle \frac {b x \left (c+d x^2\right )^2}{5 f}-\frac {\frac {\int -\frac {c (b e (5 d e-7 c f)-5 a f (d e-3 c f))-\left (5 a d f (3 d e-5 c f)-b \left (15 d^2 e^2-25 c d f e+8 c^2 f^2\right )\right ) x^2}{f x^2+e}dx}{3 f}+\frac {x \left (c+d x^2\right ) (-5 a d f-4 b c f+5 b d e)}{3 f}}{5 f}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {b x \left (c+d x^2\right )^2}{5 f}-\frac {\frac {x \left (c+d x^2\right ) (-5 a d f-4 b c f+5 b d e)}{3 f}-\frac {\int \frac {c (b e (5 d e-7 c f)-5 a f (d e-3 c f))-\left (5 a d f (3 d e-5 c f)-b \left (15 d^2 e^2-25 c d f e+8 c^2 f^2\right )\right ) x^2}{f x^2+e}dx}{3 f}}{5 f}\)

\(\Big \downarrow \) 299

\(\displaystyle \frac {b x \left (c+d x^2\right )^2}{5 f}-\frac {\frac {x \left (c+d x^2\right ) (-5 a d f-4 b c f+5 b d e)}{3 f}-\frac {-\frac {15 (b e-a f) (d e-c f)^2 \int \frac {1}{f x^2+e}dx}{f}-\frac {x \left (5 a d f (3 d e-5 c f)-b \left (8 c^2 f^2-25 c d e f+15 d^2 e^2\right )\right )}{f}}{3 f}}{5 f}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {b x \left (c+d x^2\right )^2}{5 f}-\frac {\frac {x \left (c+d x^2\right ) (-5 a d f-4 b c f+5 b d e)}{3 f}-\frac {-\frac {15 (b e-a f) \arctan \left (\frac {\sqrt {f} x}{\sqrt {e}}\right ) (d e-c f)^2}{\sqrt {e} f^{3/2}}-\frac {x \left (5 a d f (3 d e-5 c f)-b \left (8 c^2 f^2-25 c d e f+15 d^2 e^2\right )\right )}{f}}{3 f}}{5 f}\)

Input:

Int[((a + b*x^2)*(c + d*x^2)^2)/(e + f*x^2),x]
 

Output:

(b*x*(c + d*x^2)^2)/(5*f) - (((5*b*d*e - 4*b*c*f - 5*a*d*f)*x*(c + d*x^2)) 
/(3*f) - (-(((5*a*d*f*(3*d*e - 5*c*f) - b*(15*d^2*e^2 - 25*c*d*e*f + 8*c^2 
*f^2))*x)/f) - (15*(b*e - a*f)*(d*e - c*f)^2*ArcTan[(Sqrt[f]*x)/Sqrt[e]])/ 
(Sqrt[e]*f^(3/2)))/(3*f))/(5*f)
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 299
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2), x_Symbol] :> Simp[d*x 
*((a + b*x^2)^(p + 1)/(b*(2*p + 3))), x] - Simp[(a*d - b*c*(2*p + 3))/(b*(2 
*p + 3))   Int[(a + b*x^2)^p, x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - 
 a*d, 0] && NeQ[2*p + 3, 0]
 

rule 403
Int[((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_.)*((e_) + (f_.)*( 
x_)^2), x_Symbol] :> Simp[f*x*(a + b*x^2)^(p + 1)*((c + d*x^2)^q/(b*(2*(p + 
 q + 1) + 1))), x] + Simp[1/(b*(2*(p + q + 1) + 1))   Int[(a + b*x^2)^p*(c 
+ d*x^2)^(q - 1)*Simp[c*(b*e - a*f + b*e*2*(p + q + 1)) + (d*(b*e - a*f) + 
f*2*q*(b*c - a*d) + b*d*e*2*(p + q + 1))*x^2, x], x], x] /; FreeQ[{a, b, c, 
 d, e, f, p}, x] && GtQ[q, 0] && NeQ[2*(p + q + 1) + 1, 0]
 
Maple [A] (verified)

Time = 0.53 (sec) , antiderivative size = 170, normalized size of antiderivative = 1.47

method result size
default \(\frac {\frac {1}{5} b \,d^{2} x^{5} f^{2}+\frac {1}{3} a \,d^{2} f^{2} x^{3}+\frac {2}{3} b c d \,f^{2} x^{3}-\frac {1}{3} b \,d^{2} e f \,x^{3}+2 a c d \,f^{2} x -a \,d^{2} e f x +b \,c^{2} f^{2} x -2 b c d e f x +b \,d^{2} e^{2} x}{f^{3}}+\frac {\left (a \,c^{2} f^{3}-2 a c d e \,f^{2}+a \,d^{2} e^{2} f -b \,c^{2} e \,f^{2}+2 b c d \,e^{2} f -e^{3} b \,d^{2}\right ) \arctan \left (\frac {f x}{\sqrt {e f}}\right )}{f^{3} \sqrt {e f}}\) \(170\)
risch \(\frac {b \,d^{2} x^{5}}{5 f}+\frac {a \,d^{2} x^{3}}{3 f}+\frac {2 b c d \,x^{3}}{3 f}-\frac {b \,d^{2} e \,x^{3}}{3 f^{2}}+\frac {2 a c d x}{f}-\frac {a \,d^{2} e x}{f^{2}}+\frac {b \,c^{2} x}{f}-\frac {2 b c d e x}{f^{2}}+\frac {b \,d^{2} e^{2} x}{f^{3}}-\frac {\ln \left (f x +\sqrt {-e f}\right ) a \,c^{2}}{2 \sqrt {-e f}}+\frac {\ln \left (f x +\sqrt {-e f}\right ) a c d e}{f \sqrt {-e f}}-\frac {\ln \left (f x +\sqrt {-e f}\right ) a \,d^{2} e^{2}}{2 f^{2} \sqrt {-e f}}+\frac {\ln \left (f x +\sqrt {-e f}\right ) b \,c^{2} e}{2 f \sqrt {-e f}}-\frac {\ln \left (f x +\sqrt {-e f}\right ) b c d \,e^{2}}{f^{2} \sqrt {-e f}}+\frac {\ln \left (f x +\sqrt {-e f}\right ) e^{3} b \,d^{2}}{2 f^{3} \sqrt {-e f}}+\frac {\ln \left (-f x +\sqrt {-e f}\right ) a \,c^{2}}{2 \sqrt {-e f}}-\frac {\ln \left (-f x +\sqrt {-e f}\right ) a c d e}{f \sqrt {-e f}}+\frac {\ln \left (-f x +\sqrt {-e f}\right ) a \,d^{2} e^{2}}{2 f^{2} \sqrt {-e f}}-\frac {\ln \left (-f x +\sqrt {-e f}\right ) b \,c^{2} e}{2 f \sqrt {-e f}}+\frac {\ln \left (-f x +\sqrt {-e f}\right ) b c d \,e^{2}}{f^{2} \sqrt {-e f}}-\frac {\ln \left (-f x +\sqrt {-e f}\right ) e^{3} b \,d^{2}}{2 f^{3} \sqrt {-e f}}\) \(429\)

Input:

int((b*x^2+a)*(d*x^2+c)^2/(f*x^2+e),x,method=_RETURNVERBOSE)
 

Output:

1/f^3*(1/5*b*d^2*x^5*f^2+1/3*a*d^2*f^2*x^3+2/3*b*c*d*f^2*x^3-1/3*b*d^2*e*f 
*x^3+2*a*c*d*f^2*x-a*d^2*e*f*x+b*c^2*f^2*x-2*b*c*d*e*f*x+b*d^2*e^2*x)+(a*c 
^2*f^3-2*a*c*d*e*f^2+a*d^2*e^2*f-b*c^2*e*f^2+2*b*c*d*e^2*f-b*d^2*e^3)/f^3/ 
(e*f)^(1/2)*arctan(f*x/(e*f)^(1/2))
 

Fricas [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 366, normalized size of antiderivative = 3.16 \[ \int \frac {\left (a+b x^2\right ) \left (c+d x^2\right )^2}{e+f x^2} \, dx=\left [\frac {6 \, b d^{2} e f^{3} x^{5} - 10 \, {\left (b d^{2} e^{2} f^{2} - {\left (2 \, b c d + a d^{2}\right )} e f^{3}\right )} x^{3} + 15 \, {\left (b d^{2} e^{3} - a c^{2} f^{3} - {\left (2 \, b c d + a d^{2}\right )} e^{2} f + {\left (b c^{2} + 2 \, a c d\right )} e f^{2}\right )} \sqrt {-e f} \log \left (\frac {f x^{2} - 2 \, \sqrt {-e f} x - e}{f x^{2} + e}\right ) + 30 \, {\left (b d^{2} e^{3} f - {\left (2 \, b c d + a d^{2}\right )} e^{2} f^{2} + {\left (b c^{2} + 2 \, a c d\right )} e f^{3}\right )} x}{30 \, e f^{4}}, \frac {3 \, b d^{2} e f^{3} x^{5} - 5 \, {\left (b d^{2} e^{2} f^{2} - {\left (2 \, b c d + a d^{2}\right )} e f^{3}\right )} x^{3} - 15 \, {\left (b d^{2} e^{3} - a c^{2} f^{3} - {\left (2 \, b c d + a d^{2}\right )} e^{2} f + {\left (b c^{2} + 2 \, a c d\right )} e f^{2}\right )} \sqrt {e f} \arctan \left (\frac {\sqrt {e f} x}{e}\right ) + 15 \, {\left (b d^{2} e^{3} f - {\left (2 \, b c d + a d^{2}\right )} e^{2} f^{2} + {\left (b c^{2} + 2 \, a c d\right )} e f^{3}\right )} x}{15 \, e f^{4}}\right ] \] Input:

integrate((b*x^2+a)*(d*x^2+c)^2/(f*x^2+e),x, algorithm="fricas")
 

Output:

[1/30*(6*b*d^2*e*f^3*x^5 - 10*(b*d^2*e^2*f^2 - (2*b*c*d + a*d^2)*e*f^3)*x^ 
3 + 15*(b*d^2*e^3 - a*c^2*f^3 - (2*b*c*d + a*d^2)*e^2*f + (b*c^2 + 2*a*c*d 
)*e*f^2)*sqrt(-e*f)*log((f*x^2 - 2*sqrt(-e*f)*x - e)/(f*x^2 + e)) + 30*(b* 
d^2*e^3*f - (2*b*c*d + a*d^2)*e^2*f^2 + (b*c^2 + 2*a*c*d)*e*f^3)*x)/(e*f^4 
), 1/15*(3*b*d^2*e*f^3*x^5 - 5*(b*d^2*e^2*f^2 - (2*b*c*d + a*d^2)*e*f^3)*x 
^3 - 15*(b*d^2*e^3 - a*c^2*f^3 - (2*b*c*d + a*d^2)*e^2*f + (b*c^2 + 2*a*c* 
d)*e*f^2)*sqrt(e*f)*arctan(sqrt(e*f)*x/e) + 15*(b*d^2*e^3*f - (2*b*c*d + a 
*d^2)*e^2*f^2 + (b*c^2 + 2*a*c*d)*e*f^3)*x)/(e*f^4)]
 

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 347 vs. \(2 (105) = 210\).

Time = 0.50 (sec) , antiderivative size = 347, normalized size of antiderivative = 2.99 \[ \int \frac {\left (a+b x^2\right ) \left (c+d x^2\right )^2}{e+f x^2} \, dx=\frac {b d^{2} x^{5}}{5 f} + x^{3} \left (\frac {a d^{2}}{3 f} + \frac {2 b c d}{3 f} - \frac {b d^{2} e}{3 f^{2}}\right ) + x \left (\frac {2 a c d}{f} - \frac {a d^{2} e}{f^{2}} + \frac {b c^{2}}{f} - \frac {2 b c d e}{f^{2}} + \frac {b d^{2} e^{2}}{f^{3}}\right ) - \frac {\sqrt {- \frac {1}{e f^{7}}} \left (a f - b e\right ) \left (c f - d e\right )^{2} \log {\left (- \frac {e f^{3} \sqrt {- \frac {1}{e f^{7}}} \left (a f - b e\right ) \left (c f - d e\right )^{2}}{a c^{2} f^{3} - 2 a c d e f^{2} + a d^{2} e^{2} f - b c^{2} e f^{2} + 2 b c d e^{2} f - b d^{2} e^{3}} + x \right )}}{2} + \frac {\sqrt {- \frac {1}{e f^{7}}} \left (a f - b e\right ) \left (c f - d e\right )^{2} \log {\left (\frac {e f^{3} \sqrt {- \frac {1}{e f^{7}}} \left (a f - b e\right ) \left (c f - d e\right )^{2}}{a c^{2} f^{3} - 2 a c d e f^{2} + a d^{2} e^{2} f - b c^{2} e f^{2} + 2 b c d e^{2} f - b d^{2} e^{3}} + x \right )}}{2} \] Input:

integrate((b*x**2+a)*(d*x**2+c)**2/(f*x**2+e),x)
 

Output:

b*d**2*x**5/(5*f) + x**3*(a*d**2/(3*f) + 2*b*c*d/(3*f) - b*d**2*e/(3*f**2) 
) + x*(2*a*c*d/f - a*d**2*e/f**2 + b*c**2/f - 2*b*c*d*e/f**2 + b*d**2*e**2 
/f**3) - sqrt(-1/(e*f**7))*(a*f - b*e)*(c*f - d*e)**2*log(-e*f**3*sqrt(-1/ 
(e*f**7))*(a*f - b*e)*(c*f - d*e)**2/(a*c**2*f**3 - 2*a*c*d*e*f**2 + a*d** 
2*e**2*f - b*c**2*e*f**2 + 2*b*c*d*e**2*f - b*d**2*e**3) + x)/2 + sqrt(-1/ 
(e*f**7))*(a*f - b*e)*(c*f - d*e)**2*log(e*f**3*sqrt(-1/(e*f**7))*(a*f - b 
*e)*(c*f - d*e)**2/(a*c**2*f**3 - 2*a*c*d*e*f**2 + a*d**2*e**2*f - b*c**2* 
e*f**2 + 2*b*c*d*e**2*f - b*d**2*e**3) + x)/2
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {\left (a+b x^2\right ) \left (c+d x^2\right )^2}{e+f x^2} \, dx=\text {Exception raised: ValueError} \] Input:

integrate((b*x^2+a)*(d*x^2+c)^2/(f*x^2+e),x, algorithm="maxima")
 

Output:

Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e>0)', see `assume?` for more de 
tails)Is e
 

Giac [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 182, normalized size of antiderivative = 1.57 \[ \int \frac {\left (a+b x^2\right ) \left (c+d x^2\right )^2}{e+f x^2} \, dx=-\frac {{\left (b d^{2} e^{3} - 2 \, b c d e^{2} f - a d^{2} e^{2} f + b c^{2} e f^{2} + 2 \, a c d e f^{2} - a c^{2} f^{3}\right )} \arctan \left (\frac {f x}{\sqrt {e f}}\right )}{\sqrt {e f} f^{3}} + \frac {3 \, b d^{2} f^{4} x^{5} - 5 \, b d^{2} e f^{3} x^{3} + 10 \, b c d f^{4} x^{3} + 5 \, a d^{2} f^{4} x^{3} + 15 \, b d^{2} e^{2} f^{2} x - 30 \, b c d e f^{3} x - 15 \, a d^{2} e f^{3} x + 15 \, b c^{2} f^{4} x + 30 \, a c d f^{4} x}{15 \, f^{5}} \] Input:

integrate((b*x^2+a)*(d*x^2+c)^2/(f*x^2+e),x, algorithm="giac")
 

Output:

-(b*d^2*e^3 - 2*b*c*d*e^2*f - a*d^2*e^2*f + b*c^2*e*f^2 + 2*a*c*d*e*f^2 - 
a*c^2*f^3)*arctan(f*x/sqrt(e*f))/(sqrt(e*f)*f^3) + 1/15*(3*b*d^2*f^4*x^5 - 
 5*b*d^2*e*f^3*x^3 + 10*b*c*d*f^4*x^3 + 5*a*d^2*f^4*x^3 + 15*b*d^2*e^2*f^2 
*x - 30*b*c*d*e*f^3*x - 15*a*d^2*e*f^3*x + 15*b*c^2*f^4*x + 30*a*c*d*f^4*x 
)/f^5
 

Mupad [B] (verification not implemented)

Time = 1.72 (sec) , antiderivative size = 203, normalized size of antiderivative = 1.75 \[ \int \frac {\left (a+b x^2\right ) \left (c+d x^2\right )^2}{e+f x^2} \, dx=x^3\,\left (\frac {a\,d^2+2\,b\,c\,d}{3\,f}-\frac {b\,d^2\,e}{3\,f^2}\right )+x\,\left (\frac {b\,c^2+2\,a\,d\,c}{f}-\frac {e\,\left (\frac {a\,d^2+2\,b\,c\,d}{f}-\frac {b\,d^2\,e}{f^2}\right )}{f}\right )+\frac {b\,d^2\,x^5}{5\,f}+\frac {\mathrm {atan}\left (\frac {\sqrt {f}\,x\,\left (a\,f-b\,e\right )\,{\left (c\,f-d\,e\right )}^2}{\sqrt {e}\,\left (-b\,c^2\,e\,f^2+a\,c^2\,f^3+2\,b\,c\,d\,e^2\,f-2\,a\,c\,d\,e\,f^2-b\,d^2\,e^3+a\,d^2\,e^2\,f\right )}\right )\,\left (a\,f-b\,e\right )\,{\left (c\,f-d\,e\right )}^2}{\sqrt {e}\,f^{7/2}} \] Input:

int(((a + b*x^2)*(c + d*x^2)^2)/(e + f*x^2),x)
 

Output:

x^3*((a*d^2 + 2*b*c*d)/(3*f) - (b*d^2*e)/(3*f^2)) + x*((b*c^2 + 2*a*c*d)/f 
 - (e*((a*d^2 + 2*b*c*d)/f - (b*d^2*e)/f^2))/f) + (b*d^2*x^5)/(5*f) + (ata 
n((f^(1/2)*x*(a*f - b*e)*(c*f - d*e)^2)/(e^(1/2)*(a*c^2*f^3 - b*d^2*e^3 + 
a*d^2*e^2*f - b*c^2*e*f^2 - 2*a*c*d*e*f^2 + 2*b*c*d*e^2*f)))*(a*f - b*e)*( 
c*f - d*e)^2)/(e^(1/2)*f^(7/2))
 

Reduce [B] (verification not implemented)

Time = 0.16 (sec) , antiderivative size = 271, normalized size of antiderivative = 2.34 \[ \int \frac {\left (a+b x^2\right ) \left (c+d x^2\right )^2}{e+f x^2} \, dx=\frac {15 \sqrt {f}\, \sqrt {e}\, \mathit {atan} \left (\frac {f x}{\sqrt {f}\, \sqrt {e}}\right ) a \,c^{2} f^{3}-30 \sqrt {f}\, \sqrt {e}\, \mathit {atan} \left (\frac {f x}{\sqrt {f}\, \sqrt {e}}\right ) a c d e \,f^{2}+15 \sqrt {f}\, \sqrt {e}\, \mathit {atan} \left (\frac {f x}{\sqrt {f}\, \sqrt {e}}\right ) a \,d^{2} e^{2} f -15 \sqrt {f}\, \sqrt {e}\, \mathit {atan} \left (\frac {f x}{\sqrt {f}\, \sqrt {e}}\right ) b \,c^{2} e \,f^{2}+30 \sqrt {f}\, \sqrt {e}\, \mathit {atan} \left (\frac {f x}{\sqrt {f}\, \sqrt {e}}\right ) b c d \,e^{2} f -15 \sqrt {f}\, \sqrt {e}\, \mathit {atan} \left (\frac {f x}{\sqrt {f}\, \sqrt {e}}\right ) b \,d^{2} e^{3}+30 a c d e \,f^{3} x -15 a \,d^{2} e^{2} f^{2} x +5 a \,d^{2} e \,f^{3} x^{3}+15 b \,c^{2} e \,f^{3} x -30 b c d \,e^{2} f^{2} x +10 b c d e \,f^{3} x^{3}+15 b \,d^{2} e^{3} f x -5 b \,d^{2} e^{2} f^{2} x^{3}+3 b \,d^{2} e \,f^{3} x^{5}}{15 e \,f^{4}} \] Input:

int((b*x^2+a)*(d*x^2+c)^2/(f*x^2+e),x)
 

Output:

(15*sqrt(f)*sqrt(e)*atan((f*x)/(sqrt(f)*sqrt(e)))*a*c**2*f**3 - 30*sqrt(f) 
*sqrt(e)*atan((f*x)/(sqrt(f)*sqrt(e)))*a*c*d*e*f**2 + 15*sqrt(f)*sqrt(e)*a 
tan((f*x)/(sqrt(f)*sqrt(e)))*a*d**2*e**2*f - 15*sqrt(f)*sqrt(e)*atan((f*x) 
/(sqrt(f)*sqrt(e)))*b*c**2*e*f**2 + 30*sqrt(f)*sqrt(e)*atan((f*x)/(sqrt(f) 
*sqrt(e)))*b*c*d*e**2*f - 15*sqrt(f)*sqrt(e)*atan((f*x)/(sqrt(f)*sqrt(e))) 
*b*d**2*e**3 + 30*a*c*d*e*f**3*x - 15*a*d**2*e**2*f**2*x + 5*a*d**2*e*f**3 
*x**3 + 15*b*c**2*e*f**3*x - 30*b*c*d*e**2*f**2*x + 10*b*c*d*e*f**3*x**3 + 
 15*b*d**2*e**3*f*x - 5*b*d**2*e**2*f**2*x**3 + 3*b*d**2*e*f**3*x**5)/(15* 
e*f**4)