\(\int \frac {\sqrt {a+b x^2} (e+f x^2)}{(c+d x^2)^{3/2}} \, dx\) [4]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 30, antiderivative size = 206 \[ \int \frac {\sqrt {a+b x^2} \left (e+f x^2\right )}{\left (c+d x^2\right )^{3/2}} \, dx=\frac {f x \sqrt {a+b x^2}}{d \sqrt {c+d x^2}}+\frac {(d e-2 c f) \sqrt {a+b x^2} E\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{\sqrt {c} d^{3/2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {c+d x^2}}+\frac {\sqrt {c} f \sqrt {a+b x^2} \operatorname {EllipticF}\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right ),1-\frac {b c}{a d}\right )}{d^{3/2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {c+d x^2}} \] Output:

f*x*(b*x^2+a)^(1/2)/d/(d*x^2+c)^(1/2)+(-2*c*f+d*e)*(b*x^2+a)^(1/2)*Ellipti 
cE(d^(1/2)*x/c^(1/2)/(1+d*x^2/c)^(1/2),(1-b*c/a/d)^(1/2))/c^(1/2)/d^(3/2)/ 
(c*(b*x^2+a)/a/(d*x^2+c))^(1/2)/(d*x^2+c)^(1/2)+c^(1/2)*f*(b*x^2+a)^(1/2)* 
InverseJacobiAM(arctan(d^(1/2)*x/c^(1/2)),(1-b*c/a/d)^(1/2))/d^(3/2)/(c*(b 
*x^2+a)/a/(d*x^2+c))^(1/2)/(d*x^2+c)^(1/2)
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 3.08 (sec) , antiderivative size = 208, normalized size of antiderivative = 1.01 \[ \int \frac {\sqrt {a+b x^2} \left (e+f x^2\right )}{\left (c+d x^2\right )^{3/2}} \, dx=\frac {\sqrt {\frac {b}{a}} d (d e-c f) x \left (a+b x^2\right )-i b c (-d e+2 c f) \sqrt {1+\frac {b x^2}{a}} \sqrt {1+\frac {d x^2}{c}} E\left (i \text {arcsinh}\left (\sqrt {\frac {b}{a}} x\right )|\frac {a d}{b c}\right )-i c (b d e-2 b c f+a d f) \sqrt {1+\frac {b x^2}{a}} \sqrt {1+\frac {d x^2}{c}} \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {\frac {b}{a}} x\right ),\frac {a d}{b c}\right )}{\sqrt {\frac {b}{a}} c d^2 \sqrt {a+b x^2} \sqrt {c+d x^2}} \] Input:

Integrate[(Sqrt[a + b*x^2]*(e + f*x^2))/(c + d*x^2)^(3/2),x]
 

Output:

(Sqrt[b/a]*d*(d*e - c*f)*x*(a + b*x^2) - I*b*c*(-(d*e) + 2*c*f)*Sqrt[1 + ( 
b*x^2)/a]*Sqrt[1 + (d*x^2)/c]*EllipticE[I*ArcSinh[Sqrt[b/a]*x], (a*d)/(b*c 
)] - I*c*(b*d*e - 2*b*c*f + a*d*f)*Sqrt[1 + (b*x^2)/a]*Sqrt[1 + (d*x^2)/c] 
*EllipticF[I*ArcSinh[Sqrt[b/a]*x], (a*d)/(b*c)])/(Sqrt[b/a]*c*d^2*Sqrt[a + 
 b*x^2]*Sqrt[c + d*x^2])
 

Rubi [A] (verified)

Time = 0.36 (sec) , antiderivative size = 259, normalized size of antiderivative = 1.26, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {401, 25, 406, 320, 388, 313}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {a+b x^2} \left (e+f x^2\right )}{\left (c+d x^2\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 401

\(\displaystyle \frac {x \sqrt {a+b x^2} (d e-c f)}{c d \sqrt {c+d x^2}}-\frac {\int -\frac {a c f-b (d e-2 c f) x^2}{\sqrt {b x^2+a} \sqrt {d x^2+c}}dx}{c d}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\int \frac {a c f-b (d e-2 c f) x^2}{\sqrt {b x^2+a} \sqrt {d x^2+c}}dx}{c d}+\frac {x \sqrt {a+b x^2} (d e-c f)}{c d \sqrt {c+d x^2}}\)

\(\Big \downarrow \) 406

\(\displaystyle \frac {a c f \int \frac {1}{\sqrt {b x^2+a} \sqrt {d x^2+c}}dx-b (d e-2 c f) \int \frac {x^2}{\sqrt {b x^2+a} \sqrt {d x^2+c}}dx}{c d}+\frac {x \sqrt {a+b x^2} (d e-c f)}{c d \sqrt {c+d x^2}}\)

\(\Big \downarrow \) 320

\(\displaystyle \frac {\frac {c^{3/2} f \sqrt {a+b x^2} \operatorname {EllipticF}\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right ),1-\frac {b c}{a d}\right )}{\sqrt {d} \sqrt {c+d x^2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}-b (d e-2 c f) \int \frac {x^2}{\sqrt {b x^2+a} \sqrt {d x^2+c}}dx}{c d}+\frac {x \sqrt {a+b x^2} (d e-c f)}{c d \sqrt {c+d x^2}}\)

\(\Big \downarrow \) 388

\(\displaystyle \frac {\frac {c^{3/2} f \sqrt {a+b x^2} \operatorname {EllipticF}\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right ),1-\frac {b c}{a d}\right )}{\sqrt {d} \sqrt {c+d x^2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}-b (d e-2 c f) \left (\frac {x \sqrt {a+b x^2}}{b \sqrt {c+d x^2}}-\frac {c \int \frac {\sqrt {b x^2+a}}{\left (d x^2+c\right )^{3/2}}dx}{b}\right )}{c d}+\frac {x \sqrt {a+b x^2} (d e-c f)}{c d \sqrt {c+d x^2}}\)

\(\Big \downarrow \) 313

\(\displaystyle \frac {\frac {c^{3/2} f \sqrt {a+b x^2} \operatorname {EllipticF}\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right ),1-\frac {b c}{a d}\right )}{\sqrt {d} \sqrt {c+d x^2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}-b (d e-2 c f) \left (\frac {x \sqrt {a+b x^2}}{b \sqrt {c+d x^2}}-\frac {\sqrt {c} \sqrt {a+b x^2} E\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{b \sqrt {d} \sqrt {c+d x^2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}\right )}{c d}+\frac {x \sqrt {a+b x^2} (d e-c f)}{c d \sqrt {c+d x^2}}\)

Input:

Int[(Sqrt[a + b*x^2]*(e + f*x^2))/(c + d*x^2)^(3/2),x]
 

Output:

((d*e - c*f)*x*Sqrt[a + b*x^2])/(c*d*Sqrt[c + d*x^2]) + (-(b*(d*e - 2*c*f) 
*((x*Sqrt[a + b*x^2])/(b*Sqrt[c + d*x^2]) - (Sqrt[c]*Sqrt[a + b*x^2]*Ellip 
ticE[ArcTan[(Sqrt[d]*x)/Sqrt[c]], 1 - (b*c)/(a*d)])/(b*Sqrt[d]*Sqrt[(c*(a 
+ b*x^2))/(a*(c + d*x^2))]*Sqrt[c + d*x^2]))) + (c^(3/2)*f*Sqrt[a + b*x^2] 
*EllipticF[ArcTan[(Sqrt[d]*x)/Sqrt[c]], 1 - (b*c)/(a*d)])/(Sqrt[d]*Sqrt[(c 
*(a + b*x^2))/(a*(c + d*x^2))]*Sqrt[c + d*x^2]))/(c*d)
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 313
Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Sim 
p[(Sqrt[a + b*x^2]/(c*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c 
+ d*x^2)))]))*EllipticE[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /; FreeQ 
[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]
 

rule 320
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> S 
imp[(Sqrt[a + b*x^2]/(a*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*( 
c + d*x^2)))]))*EllipticF[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /; Fre 
eQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]
 

rule 388
Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] 
 :> Simp[x*(Sqrt[a + b*x^2]/(b*Sqrt[c + d*x^2])), x] - Simp[c/b   Int[Sqrt[ 
a + b*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - 
 a*d, 0] && PosQ[b/a] && PosQ[d/c] &&  !SimplerSqrtQ[b/a, d/c]
 

rule 401
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_.)*((e_) + (f_.)*(x 
_)^2), x_Symbol] :> Simp[(-(b*e - a*f))*x*(a + b*x^2)^(p + 1)*((c + d*x^2)^ 
q/(a*b*2*(p + 1))), x] + Simp[1/(a*b*2*(p + 1))   Int[(a + b*x^2)^(p + 1)*( 
c + d*x^2)^(q - 1)*Simp[c*(b*e*2*(p + 1) + b*e - a*f) + d*(b*e*2*(p + 1) + 
(b*e - a*f)*(2*q + 1))*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && L 
tQ[p, -1] && GtQ[q, 0]
 

rule 406
Int[((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_.)*((e_) + (f_.)*( 
x_)^2), x_Symbol] :> Simp[e   Int[(a + b*x^2)^p*(c + d*x^2)^q, x], x] + Sim 
p[f   Int[x^2*(a + b*x^2)^p*(c + d*x^2)^q, x], x] /; FreeQ[{a, b, c, d, e, 
f, p, q}, x]
 
Maple [A] (verified)

Time = 5.85 (sec) , antiderivative size = 378, normalized size of antiderivative = 1.83

method result size
elliptic \(\frac {\sqrt {\left (b \,x^{2}+a \right ) \left (x^{2} d +c \right )}\, \left (-\frac {\left (b d \,x^{2}+a d \right ) \left (c f -d e \right ) x}{c \,d^{2} \sqrt {\left (x^{2}+\frac {c}{d}\right ) \left (b d \,x^{2}+a d \right )}}+\frac {\left (\frac {a d f -b c f +b d e}{d^{2}}-\frac {\left (c f -d e \right ) \left (a d -b c \right )}{d^{2} c}+\frac {a \left (c f -d e \right )}{d c}\right ) \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \operatorname {EllipticF}\left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )}{\sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+x^{2} b c +a c}}-\frac {\left (\frac {f b}{d}+\frac {\left (c f -d e \right ) b}{d c}\right ) c \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \left (\operatorname {EllipticF}\left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )-\operatorname {EllipticE}\left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )\right )}{\sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+x^{2} b c +a c}\, d}\right )}{\sqrt {b \,x^{2}+a}\, \sqrt {x^{2} d +c}}\) \(378\)
default \(\frac {\sqrt {b \,x^{2}+a}\, \sqrt {x^{2} d +c}\, \left (-\sqrt {-\frac {b}{a}}\, b c d f \,x^{3}+\sqrt {-\frac {b}{a}}\, b \,d^{2} e \,x^{3}+\sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {x^{2} d +c}{c}}\, \operatorname {EllipticF}\left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) a c d f -2 \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {x^{2} d +c}{c}}\, \operatorname {EllipticF}\left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) b \,c^{2} f +\sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {x^{2} d +c}{c}}\, \operatorname {EllipticF}\left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) b c d e +2 \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {x^{2} d +c}{c}}\, \operatorname {EllipticE}\left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) b \,c^{2} f -\sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {x^{2} d +c}{c}}\, \operatorname {EllipticE}\left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) b c d e -\sqrt {-\frac {b}{a}}\, a c d f x +\sqrt {-\frac {b}{a}}\, a \,d^{2} e x \right )}{\left (b d \,x^{4}+a d \,x^{2}+x^{2} b c +a c \right ) d^{2} c \sqrt {-\frac {b}{a}}}\) \(393\)

Input:

int((b*x^2+a)^(1/2)*(f*x^2+e)/(d*x^2+c)^(3/2),x,method=_RETURNVERBOSE)
 

Output:

((b*x^2+a)*(d*x^2+c))^(1/2)/(b*x^2+a)^(1/2)/(d*x^2+c)^(1/2)*(-(b*d*x^2+a*d 
)*(c*f-d*e)/c/d^2*x/((x^2+c/d)*(b*d*x^2+a*d))^(1/2)+((a*d*f-b*c*f+b*d*e)/d 
^2-(c*f-d*e)/d^2*(a*d-b*c)/c+a/d*(c*f-d*e)/c)/(-b/a)^(1/2)*(1+b*x^2/a)^(1/ 
2)*(1+d*x^2/c)^(1/2)/(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)*EllipticF(x*(-b/a 
)^(1/2),(-1+(a*d+b*c)/c/b)^(1/2))-(f*b/d+(c*f-d*e)/d*b/c)*c/(-b/a)^(1/2)*( 
1+b*x^2/a)^(1/2)*(1+d*x^2/c)^(1/2)/(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)/d*( 
EllipticF(x*(-b/a)^(1/2),(-1+(a*d+b*c)/c/b)^(1/2))-EllipticE(x*(-b/a)^(1/2 
),(-1+(a*d+b*c)/c/b)^(1/2))))
 

Fricas [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 237, normalized size of antiderivative = 1.15 \[ \int \frac {\sqrt {a+b x^2} \left (e+f x^2\right )}{\left (c+d x^2\right )^{3/2}} \, dx=\frac {{\left ({\left (b c d^{2} e - 2 \, b c^{2} d f\right )} x^{3} + {\left (b c^{2} d e - 2 \, b c^{3} f\right )} x\right )} \sqrt {b d} \sqrt {-\frac {c}{d}} E(\arcsin \left (\frac {\sqrt {-\frac {c}{d}}}{x}\right )\,|\,\frac {a d}{b c}) - {\left ({\left (b c d^{2} e - {\left (2 \, b c^{2} d + a d^{3}\right )} f\right )} x^{3} + {\left (b c^{2} d e - {\left (2 \, b c^{3} + a c d^{2}\right )} f\right )} x\right )} \sqrt {b d} \sqrt {-\frac {c}{d}} F(\arcsin \left (\frac {\sqrt {-\frac {c}{d}}}{x}\right )\,|\,\frac {a d}{b c}) + {\left (b c d^{2} f x^{2} - b c d^{2} e + 2 \, b c^{2} d f\right )} \sqrt {b x^{2} + a} \sqrt {d x^{2} + c}}{b c d^{4} x^{3} + b c^{2} d^{3} x} \] Input:

integrate((b*x^2+a)^(1/2)*(f*x^2+e)/(d*x^2+c)^(3/2),x, algorithm="fricas")
 

Output:

(((b*c*d^2*e - 2*b*c^2*d*f)*x^3 + (b*c^2*d*e - 2*b*c^3*f)*x)*sqrt(b*d)*sqr 
t(-c/d)*elliptic_e(arcsin(sqrt(-c/d)/x), a*d/(b*c)) - ((b*c*d^2*e - (2*b*c 
^2*d + a*d^3)*f)*x^3 + (b*c^2*d*e - (2*b*c^3 + a*c*d^2)*f)*x)*sqrt(b*d)*sq 
rt(-c/d)*elliptic_f(arcsin(sqrt(-c/d)/x), a*d/(b*c)) + (b*c*d^2*f*x^2 - b* 
c*d^2*e + 2*b*c^2*d*f)*sqrt(b*x^2 + a)*sqrt(d*x^2 + c))/(b*c*d^4*x^3 + b*c 
^2*d^3*x)
 

Sympy [F]

\[ \int \frac {\sqrt {a+b x^2} \left (e+f x^2\right )}{\left (c+d x^2\right )^{3/2}} \, dx=\int \frac {\sqrt {a + b x^{2}} \left (e + f x^{2}\right )}{\left (c + d x^{2}\right )^{\frac {3}{2}}}\, dx \] Input:

integrate((b*x**2+a)**(1/2)*(f*x**2+e)/(d*x**2+c)**(3/2),x)
 

Output:

Integral(sqrt(a + b*x**2)*(e + f*x**2)/(c + d*x**2)**(3/2), x)
 

Maxima [F]

\[ \int \frac {\sqrt {a+b x^2} \left (e+f x^2\right )}{\left (c+d x^2\right )^{3/2}} \, dx=\int { \frac {\sqrt {b x^{2} + a} {\left (f x^{2} + e\right )}}{{\left (d x^{2} + c\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate((b*x^2+a)^(1/2)*(f*x^2+e)/(d*x^2+c)^(3/2),x, algorithm="maxima")
 

Output:

integrate(sqrt(b*x^2 + a)*(f*x^2 + e)/(d*x^2 + c)^(3/2), x)
 

Giac [F]

\[ \int \frac {\sqrt {a+b x^2} \left (e+f x^2\right )}{\left (c+d x^2\right )^{3/2}} \, dx=\int { \frac {\sqrt {b x^{2} + a} {\left (f x^{2} + e\right )}}{{\left (d x^{2} + c\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate((b*x^2+a)^(1/2)*(f*x^2+e)/(d*x^2+c)^(3/2),x, algorithm="giac")
 

Output:

integrate(sqrt(b*x^2 + a)*(f*x^2 + e)/(d*x^2 + c)^(3/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+b x^2} \left (e+f x^2\right )}{\left (c+d x^2\right )^{3/2}} \, dx=\int \frac {\sqrt {b\,x^2+a}\,\left (f\,x^2+e\right )}{{\left (d\,x^2+c\right )}^{3/2}} \,d x \] Input:

int(((a + b*x^2)^(1/2)*(e + f*x^2))/(c + d*x^2)^(3/2),x)
 

Output:

int(((a + b*x^2)^(1/2)*(e + f*x^2))/(c + d*x^2)^(3/2), x)
 

Reduce [F]

\[ \int \frac {\sqrt {a+b x^2} \left (e+f x^2\right )}{\left (c+d x^2\right )^{3/2}} \, dx=\frac {\sqrt {d \,x^{2}+c}\, \sqrt {b \,x^{2}+a}\, a f x +\sqrt {d \,x^{2}+c}\, \sqrt {b \,x^{2}+a}\, b e x -\left (\int \frac {\sqrt {d \,x^{2}+c}\, \sqrt {b \,x^{2}+a}\, x^{4}}{b \,d^{2} x^{6}+a \,d^{2} x^{4}+2 b c d \,x^{4}+2 a c d \,x^{2}+b \,c^{2} x^{2}+a \,c^{2}}d x \right ) a b c d f -\left (\int \frac {\sqrt {d \,x^{2}+c}\, \sqrt {b \,x^{2}+a}\, x^{4}}{b \,d^{2} x^{6}+a \,d^{2} x^{4}+2 b c d \,x^{4}+2 a c d \,x^{2}+b \,c^{2} x^{2}+a \,c^{2}}d x \right ) a b \,d^{2} f \,x^{2}+2 \left (\int \frac {\sqrt {d \,x^{2}+c}\, \sqrt {b \,x^{2}+a}\, x^{4}}{b \,d^{2} x^{6}+a \,d^{2} x^{4}+2 b c d \,x^{4}+2 a c d \,x^{2}+b \,c^{2} x^{2}+a \,c^{2}}d x \right ) b^{2} c^{2} f -\left (\int \frac {\sqrt {d \,x^{2}+c}\, \sqrt {b \,x^{2}+a}\, x^{4}}{b \,d^{2} x^{6}+a \,d^{2} x^{4}+2 b c d \,x^{4}+2 a c d \,x^{2}+b \,c^{2} x^{2}+a \,c^{2}}d x \right ) b^{2} c d e +2 \left (\int \frac {\sqrt {d \,x^{2}+c}\, \sqrt {b \,x^{2}+a}\, x^{4}}{b \,d^{2} x^{6}+a \,d^{2} x^{4}+2 b c d \,x^{4}+2 a c d \,x^{2}+b \,c^{2} x^{2}+a \,c^{2}}d x \right ) b^{2} c d f \,x^{2}-\left (\int \frac {\sqrt {d \,x^{2}+c}\, \sqrt {b \,x^{2}+a}\, x^{4}}{b \,d^{2} x^{6}+a \,d^{2} x^{4}+2 b c d \,x^{4}+2 a c d \,x^{2}+b \,c^{2} x^{2}+a \,c^{2}}d x \right ) b^{2} d^{2} e \,x^{2}-\left (\int \frac {\sqrt {d \,x^{2}+c}\, \sqrt {b \,x^{2}+a}}{b \,d^{2} x^{6}+a \,d^{2} x^{4}+2 b c d \,x^{4}+2 a c d \,x^{2}+b \,c^{2} x^{2}+a \,c^{2}}d x \right ) a^{2} c^{2} f -\left (\int \frac {\sqrt {d \,x^{2}+c}\, \sqrt {b \,x^{2}+a}}{b \,d^{2} x^{6}+a \,d^{2} x^{4}+2 b c d \,x^{4}+2 a c d \,x^{2}+b \,c^{2} x^{2}+a \,c^{2}}d x \right ) a^{2} c d f \,x^{2}+\left (\int \frac {\sqrt {d \,x^{2}+c}\, \sqrt {b \,x^{2}+a}}{b \,d^{2} x^{6}+a \,d^{2} x^{4}+2 b c d \,x^{4}+2 a c d \,x^{2}+b \,c^{2} x^{2}+a \,c^{2}}d x \right ) a b \,c^{2} e +\left (\int \frac {\sqrt {d \,x^{2}+c}\, \sqrt {b \,x^{2}+a}}{b \,d^{2} x^{6}+a \,d^{2} x^{4}+2 b c d \,x^{4}+2 a c d \,x^{2}+b \,c^{2} x^{2}+a \,c^{2}}d x \right ) a b c d e \,x^{2}}{2 b c \left (d \,x^{2}+c \right )} \] Input:

int((b*x^2+a)^(1/2)*(f*x^2+e)/(d*x^2+c)^(3/2),x)
 

Output:

(sqrt(c + d*x**2)*sqrt(a + b*x**2)*a*f*x + sqrt(c + d*x**2)*sqrt(a + b*x** 
2)*b*e*x - int((sqrt(c + d*x**2)*sqrt(a + b*x**2)*x**4)/(a*c**2 + 2*a*c*d* 
x**2 + a*d**2*x**4 + b*c**2*x**2 + 2*b*c*d*x**4 + b*d**2*x**6),x)*a*b*c*d* 
f - int((sqrt(c + d*x**2)*sqrt(a + b*x**2)*x**4)/(a*c**2 + 2*a*c*d*x**2 + 
a*d**2*x**4 + b*c**2*x**2 + 2*b*c*d*x**4 + b*d**2*x**6),x)*a*b*d**2*f*x**2 
 + 2*int((sqrt(c + d*x**2)*sqrt(a + b*x**2)*x**4)/(a*c**2 + 2*a*c*d*x**2 + 
 a*d**2*x**4 + b*c**2*x**2 + 2*b*c*d*x**4 + b*d**2*x**6),x)*b**2*c**2*f - 
int((sqrt(c + d*x**2)*sqrt(a + b*x**2)*x**4)/(a*c**2 + 2*a*c*d*x**2 + a*d* 
*2*x**4 + b*c**2*x**2 + 2*b*c*d*x**4 + b*d**2*x**6),x)*b**2*c*d*e + 2*int( 
(sqrt(c + d*x**2)*sqrt(a + b*x**2)*x**4)/(a*c**2 + 2*a*c*d*x**2 + a*d**2*x 
**4 + b*c**2*x**2 + 2*b*c*d*x**4 + b*d**2*x**6),x)*b**2*c*d*f*x**2 - int(( 
sqrt(c + d*x**2)*sqrt(a + b*x**2)*x**4)/(a*c**2 + 2*a*c*d*x**2 + a*d**2*x* 
*4 + b*c**2*x**2 + 2*b*c*d*x**4 + b*d**2*x**6),x)*b**2*d**2*e*x**2 - int(( 
sqrt(c + d*x**2)*sqrt(a + b*x**2))/(a*c**2 + 2*a*c*d*x**2 + a*d**2*x**4 + 
b*c**2*x**2 + 2*b*c*d*x**4 + b*d**2*x**6),x)*a**2*c**2*f - int((sqrt(c + d 
*x**2)*sqrt(a + b*x**2))/(a*c**2 + 2*a*c*d*x**2 + a*d**2*x**4 + b*c**2*x** 
2 + 2*b*c*d*x**4 + b*d**2*x**6),x)*a**2*c*d*f*x**2 + int((sqrt(c + d*x**2) 
*sqrt(a + b*x**2))/(a*c**2 + 2*a*c*d*x**2 + a*d**2*x**4 + b*c**2*x**2 + 2* 
b*c*d*x**4 + b*d**2*x**6),x)*a*b*c**2*e + int((sqrt(c + d*x**2)*sqrt(a + b 
*x**2))/(a*c**2 + 2*a*c*d*x**2 + a*d**2*x**4 + b*c**2*x**2 + 2*b*c*d*x*...