\(\int \frac {\sqrt {a+b x^2}}{\sqrt {c+d x^2} (e+f x^2)^{3/2}} \, dx\) [511]

Optimal result
Mathematica [A] (verified)
Rubi [B] (verified)
Maple [F]
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 34, antiderivative size = 148 \[ \int \frac {\sqrt {a+b x^2}}{\sqrt {c+d x^2} \left (e+f x^2\right )^{3/2}} \, dx=\frac {\sqrt {c} \sqrt {a+b x^2} \sqrt {\frac {e \left (c+d x^2\right )}{c \left (e+f x^2\right )}} E\left (\arcsin \left (\frac {\sqrt {-d e+c f} x}{\sqrt {c} \sqrt {e+f x^2}}\right )|\frac {c (b e-a f)}{a (d e-c f)}\right )}{e \sqrt {-d e+c f} \sqrt {c+d x^2} \sqrt {\frac {e \left (a+b x^2\right )}{a \left (e+f x^2\right )}}} \] Output:

c^(1/2)*(b*x^2+a)^(1/2)*(e*(d*x^2+c)/c/(f*x^2+e))^(1/2)*EllipticE((c*f-d*e 
)^(1/2)*x/c^(1/2)/(f*x^2+e)^(1/2),(c*(-a*f+b*e)/a/(-c*f+d*e))^(1/2))/e/(c* 
f-d*e)^(1/2)/(d*x^2+c)^(1/2)/(e*(b*x^2+a)/a/(f*x^2+e))^(1/2)
 

Mathematica [A] (verified)

Time = 5.44 (sec) , antiderivative size = 148, normalized size of antiderivative = 1.00 \[ \int \frac {\sqrt {a+b x^2}}{\sqrt {c+d x^2} \left (e+f x^2\right )^{3/2}} \, dx=\frac {\sqrt {c} \sqrt {a+b x^2} \sqrt {\frac {e \left (c+d x^2\right )}{c \left (e+f x^2\right )}} E\left (\arcsin \left (\frac {\sqrt {-d e+c f} x}{\sqrt {c} \sqrt {e+f x^2}}\right )|\frac {c (-b e+a f)}{a (-d e+c f)}\right )}{e \sqrt {-d e+c f} \sqrt {c+d x^2} \sqrt {\frac {e \left (a+b x^2\right )}{a \left (e+f x^2\right )}}} \] Input:

Integrate[Sqrt[a + b*x^2]/(Sqrt[c + d*x^2]*(e + f*x^2)^(3/2)),x]
 

Output:

(Sqrt[c]*Sqrt[a + b*x^2]*Sqrt[(e*(c + d*x^2))/(c*(e + f*x^2))]*EllipticE[A 
rcSin[(Sqrt[-(d*e) + c*f]*x)/(Sqrt[c]*Sqrt[e + f*x^2])], (c*(-(b*e) + a*f) 
)/(a*(-(d*e) + c*f))])/(e*Sqrt[-(d*e) + c*f]*Sqrt[c + d*x^2]*Sqrt[(e*(a + 
b*x^2))/(a*(e + f*x^2))])
 

Rubi [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(568\) vs. \(2(148)=296\).

Time = 0.58 (sec) , antiderivative size = 568, normalized size of antiderivative = 3.84, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.147, Rules used = {429, 324, 320, 388, 313}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {a+b x^2}}{\sqrt {c+d x^2} \left (e+f x^2\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 429

\(\displaystyle \frac {\sqrt {a+b x^2} \sqrt {\frac {e \left (c+d x^2\right )}{c \left (e+f x^2\right )}} \int \frac {\sqrt {\frac {(b e-a f) x^2}{a \left (f x^2+e\right )}+1}}{\sqrt {\frac {(d e-c f) x^2}{c \left (f x^2+e\right )}+1}}d\frac {x}{\sqrt {f x^2+e}}}{e \sqrt {c+d x^2} \sqrt {\frac {e \left (a+b x^2\right )}{a \left (e+f x^2\right )}}}\)

\(\Big \downarrow \) 324

\(\displaystyle \frac {\sqrt {a+b x^2} \sqrt {\frac {e \left (c+d x^2\right )}{c \left (e+f x^2\right )}} \left (\int \frac {1}{\sqrt {\frac {(b e-a f) x^2}{a \left (f x^2+e\right )}+1} \sqrt {\frac {(d e-c f) x^2}{c \left (f x^2+e\right )}+1}}d\frac {x}{\sqrt {f x^2+e}}+\frac {(b e-a f) \int \frac {x^2}{\left (f x^2+e\right ) \sqrt {\frac {(b e-a f) x^2}{a \left (f x^2+e\right )}+1} \sqrt {\frac {(d e-c f) x^2}{c \left (f x^2+e\right )}+1}}d\frac {x}{\sqrt {f x^2+e}}}{a}\right )}{e \sqrt {c+d x^2} \sqrt {\frac {e \left (a+b x^2\right )}{a \left (e+f x^2\right )}}}\)

\(\Big \downarrow \) 320

\(\displaystyle \frac {\sqrt {a+b x^2} \sqrt {\frac {e \left (c+d x^2\right )}{c \left (e+f x^2\right )}} \left (\frac {(b e-a f) \int \frac {x^2}{\left (f x^2+e\right ) \sqrt {\frac {(b e-a f) x^2}{a \left (f x^2+e\right )}+1} \sqrt {\frac {(d e-c f) x^2}{c \left (f x^2+e\right )}+1}}d\frac {x}{\sqrt {f x^2+e}}}{a}+\frac {\sqrt {c} \sqrt {\frac {x^2 (b e-a f)}{a \left (e+f x^2\right )}+1} \operatorname {EllipticF}\left (\arctan \left (\frac {\sqrt {d e-c f} x}{\sqrt {c} \sqrt {f x^2+e}}\right ),-\frac {(b c-a d) e}{a (d e-c f)}\right )}{\sqrt {d e-c f} \sqrt {\frac {x^2 (d e-c f)}{c \left (e+f x^2\right )}+1} \sqrt {\frac {c \left (\frac {x^2 (b e-a f)}{e+f x^2}+a\right )}{a \left (\frac {x^2 (d e-c f)}{e+f x^2}+c\right )}}}\right )}{e \sqrt {c+d x^2} \sqrt {\frac {e \left (a+b x^2\right )}{a \left (e+f x^2\right )}}}\)

\(\Big \downarrow \) 388

\(\displaystyle \frac {\sqrt {a+b x^2} \sqrt {\frac {e \left (c+d x^2\right )}{c \left (e+f x^2\right )}} \left (\frac {(b e-a f) \left (\frac {a x \sqrt {\frac {x^2 (b e-a f)}{a \left (e+f x^2\right )}+1}}{\sqrt {e+f x^2} (b e-a f) \sqrt {\frac {x^2 (d e-c f)}{c \left (e+f x^2\right )}+1}}-\frac {a \int \frac {\sqrt {\frac {(b e-a f) x^2}{a \left (f x^2+e\right )}+1}}{\left (\frac {(d e-c f) x^2}{c \left (f x^2+e\right )}+1\right )^{3/2}}d\frac {x}{\sqrt {f x^2+e}}}{b e-a f}\right )}{a}+\frac {\sqrt {c} \sqrt {\frac {x^2 (b e-a f)}{a \left (e+f x^2\right )}+1} \operatorname {EllipticF}\left (\arctan \left (\frac {\sqrt {d e-c f} x}{\sqrt {c} \sqrt {f x^2+e}}\right ),-\frac {(b c-a d) e}{a (d e-c f)}\right )}{\sqrt {d e-c f} \sqrt {\frac {x^2 (d e-c f)}{c \left (e+f x^2\right )}+1} \sqrt {\frac {c \left (\frac {x^2 (b e-a f)}{e+f x^2}+a\right )}{a \left (\frac {x^2 (d e-c f)}{e+f x^2}+c\right )}}}\right )}{e \sqrt {c+d x^2} \sqrt {\frac {e \left (a+b x^2\right )}{a \left (e+f x^2\right )}}}\)

\(\Big \downarrow \) 313

\(\displaystyle \frac {\sqrt {a+b x^2} \sqrt {\frac {e \left (c+d x^2\right )}{c \left (e+f x^2\right )}} \left (\frac {\sqrt {c} \sqrt {\frac {x^2 (b e-a f)}{a \left (e+f x^2\right )}+1} \operatorname {EllipticF}\left (\arctan \left (\frac {\sqrt {d e-c f} x}{\sqrt {c} \sqrt {f x^2+e}}\right ),-\frac {(b c-a d) e}{a (d e-c f)}\right )}{\sqrt {d e-c f} \sqrt {\frac {x^2 (d e-c f)}{c \left (e+f x^2\right )}+1} \sqrt {\frac {c \left (\frac {x^2 (b e-a f)}{e+f x^2}+a\right )}{a \left (\frac {x^2 (d e-c f)}{e+f x^2}+c\right )}}}+\frac {(b e-a f) \left (\frac {a x \sqrt {\frac {x^2 (b e-a f)}{a \left (e+f x^2\right )}+1}}{\sqrt {e+f x^2} (b e-a f) \sqrt {\frac {x^2 (d e-c f)}{c \left (e+f x^2\right )}+1}}-\frac {a \sqrt {c} \sqrt {\frac {x^2 (b e-a f)}{a \left (e+f x^2\right )}+1} E\left (\arctan \left (\frac {\sqrt {d e-c f} x}{\sqrt {c} \sqrt {f x^2+e}}\right )|-\frac {(b c-a d) e}{a (d e-c f)}\right )}{(b e-a f) \sqrt {d e-c f} \sqrt {\frac {x^2 (d e-c f)}{c \left (e+f x^2\right )}+1} \sqrt {\frac {c \left (\frac {x^2 (b e-a f)}{e+f x^2}+a\right )}{a \left (\frac {x^2 (d e-c f)}{e+f x^2}+c\right )}}}\right )}{a}\right )}{e \sqrt {c+d x^2} \sqrt {\frac {e \left (a+b x^2\right )}{a \left (e+f x^2\right )}}}\)

Input:

Int[Sqrt[a + b*x^2]/(Sqrt[c + d*x^2]*(e + f*x^2)^(3/2)),x]
 

Output:

(Sqrt[a + b*x^2]*Sqrt[(e*(c + d*x^2))/(c*(e + f*x^2))]*(((b*e - a*f)*((a*x 
*Sqrt[1 + ((b*e - a*f)*x^2)/(a*(e + f*x^2))])/((b*e - a*f)*Sqrt[e + f*x^2] 
*Sqrt[1 + ((d*e - c*f)*x^2)/(c*(e + f*x^2))]) - (a*Sqrt[c]*Sqrt[1 + ((b*e 
- a*f)*x^2)/(a*(e + f*x^2))]*EllipticE[ArcTan[(Sqrt[d*e - c*f]*x)/(Sqrt[c] 
*Sqrt[e + f*x^2])], -(((b*c - a*d)*e)/(a*(d*e - c*f)))])/((b*e - a*f)*Sqrt 
[d*e - c*f]*Sqrt[(c*(a + ((b*e - a*f)*x^2)/(e + f*x^2)))/(a*(c + ((d*e - c 
*f)*x^2)/(e + f*x^2)))]*Sqrt[1 + ((d*e - c*f)*x^2)/(c*(e + f*x^2))])))/a + 
 (Sqrt[c]*Sqrt[1 + ((b*e - a*f)*x^2)/(a*(e + f*x^2))]*EllipticF[ArcTan[(Sq 
rt[d*e - c*f]*x)/(Sqrt[c]*Sqrt[e + f*x^2])], -(((b*c - a*d)*e)/(a*(d*e - c 
*f)))])/(Sqrt[d*e - c*f]*Sqrt[(c*(a + ((b*e - a*f)*x^2)/(e + f*x^2)))/(a*( 
c + ((d*e - c*f)*x^2)/(e + f*x^2)))]*Sqrt[1 + ((d*e - c*f)*x^2)/(c*(e + f* 
x^2))])))/(e*Sqrt[c + d*x^2]*Sqrt[(e*(a + b*x^2))/(a*(e + f*x^2))])
 

Defintions of rubi rules used

rule 313
Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Sim 
p[(Sqrt[a + b*x^2]/(c*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c 
+ d*x^2)))]))*EllipticE[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /; FreeQ 
[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]
 

rule 320
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> S 
imp[(Sqrt[a + b*x^2]/(a*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*( 
c + d*x^2)))]))*EllipticF[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /; Fre 
eQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]
 

rule 324
Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[ 
a   Int[1/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]), x], x] + Simp[b   Int[x^2/(Sqr 
t[a + b*x^2]*Sqrt[c + d*x^2]), x], x] /; FreeQ[{a, b, c, d}, x] && PosQ[d/c 
] && PosQ[b/a]
 

rule 388
Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] 
 :> Simp[x*(Sqrt[a + b*x^2]/(b*Sqrt[c + d*x^2])), x] - Simp[c/b   Int[Sqrt[ 
a + b*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - 
 a*d, 0] && PosQ[b/a] && PosQ[d/c] &&  !SimplerSqrtQ[b/a, d/c]
 

rule 429
Int[Sqrt[(c_) + (d_.)*(x_)^2]/(((a_) + (b_.)*(x_)^2)^(3/2)*Sqrt[(e_) + (f_. 
)*(x_)^2]), x_Symbol] :> Simp[Sqrt[c + d*x^2]*(Sqrt[a*((e + f*x^2)/(e*(a + 
b*x^2)))]/(a*Sqrt[e + f*x^2]*Sqrt[a*((c + d*x^2)/(c*(a + b*x^2)))]))   Subs 
t[Int[Sqrt[1 - (b*c - a*d)*(x^2/c)]/Sqrt[1 - (b*e - a*f)*(x^2/e)], x], x, x 
/Sqrt[a + b*x^2]], x] /; FreeQ[{a, b, c, d, e, f}, x]
 
Maple [F]

\[\int \frac {\sqrt {b \,x^{2}+a}}{\sqrt {x^{2} d +c}\, \left (f \,x^{2}+e \right )^{\frac {3}{2}}}d x\]

Input:

int((b*x^2+a)^(1/2)/(d*x^2+c)^(1/2)/(f*x^2+e)^(3/2),x)
 

Output:

int((b*x^2+a)^(1/2)/(d*x^2+c)^(1/2)/(f*x^2+e)^(3/2),x)
 

Fricas [F]

\[ \int \frac {\sqrt {a+b x^2}}{\sqrt {c+d x^2} \left (e+f x^2\right )^{3/2}} \, dx=\int { \frac {\sqrt {b x^{2} + a}}{\sqrt {d x^{2} + c} {\left (f x^{2} + e\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate((b*x^2+a)^(1/2)/(d*x^2+c)^(1/2)/(f*x^2+e)^(3/2),x, algorithm="fr 
icas")
 

Output:

integral(sqrt(b*x^2 + a)*sqrt(d*x^2 + c)*sqrt(f*x^2 + e)/(d*f^2*x^6 + (2*d 
*e*f + c*f^2)*x^4 + c*e^2 + (d*e^2 + 2*c*e*f)*x^2), x)
 

Sympy [F]

\[ \int \frac {\sqrt {a+b x^2}}{\sqrt {c+d x^2} \left (e+f x^2\right )^{3/2}} \, dx=\int \frac {\sqrt {a + b x^{2}}}{\sqrt {c + d x^{2}} \left (e + f x^{2}\right )^{\frac {3}{2}}}\, dx \] Input:

integrate((b*x**2+a)**(1/2)/(d*x**2+c)**(1/2)/(f*x**2+e)**(3/2),x)
 

Output:

Integral(sqrt(a + b*x**2)/(sqrt(c + d*x**2)*(e + f*x**2)**(3/2)), x)
 

Maxima [F]

\[ \int \frac {\sqrt {a+b x^2}}{\sqrt {c+d x^2} \left (e+f x^2\right )^{3/2}} \, dx=\int { \frac {\sqrt {b x^{2} + a}}{\sqrt {d x^{2} + c} {\left (f x^{2} + e\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate((b*x^2+a)^(1/2)/(d*x^2+c)^(1/2)/(f*x^2+e)^(3/2),x, algorithm="ma 
xima")
 

Output:

integrate(sqrt(b*x^2 + a)/(sqrt(d*x^2 + c)*(f*x^2 + e)^(3/2)), x)
 

Giac [F]

\[ \int \frac {\sqrt {a+b x^2}}{\sqrt {c+d x^2} \left (e+f x^2\right )^{3/2}} \, dx=\int { \frac {\sqrt {b x^{2} + a}}{\sqrt {d x^{2} + c} {\left (f x^{2} + e\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate((b*x^2+a)^(1/2)/(d*x^2+c)^(1/2)/(f*x^2+e)^(3/2),x, algorithm="gi 
ac")
 

Output:

integrate(sqrt(b*x^2 + a)/(sqrt(d*x^2 + c)*(f*x^2 + e)^(3/2)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+b x^2}}{\sqrt {c+d x^2} \left (e+f x^2\right )^{3/2}} \, dx=\int \frac {\sqrt {b\,x^2+a}}{\sqrt {d\,x^2+c}\,{\left (f\,x^2+e\right )}^{3/2}} \,d x \] Input:

int((a + b*x^2)^(1/2)/((c + d*x^2)^(1/2)*(e + f*x^2)^(3/2)),x)
 

Output:

int((a + b*x^2)^(1/2)/((c + d*x^2)^(1/2)*(e + f*x^2)^(3/2)), x)
 

Reduce [F]

\[ \int \frac {\sqrt {a+b x^2}}{\sqrt {c+d x^2} \left (e+f x^2\right )^{3/2}} \, dx=\int \frac {\sqrt {f \,x^{2}+e}\, \sqrt {d \,x^{2}+c}\, \sqrt {b \,x^{2}+a}}{d \,f^{2} x^{6}+c \,f^{2} x^{4}+2 d e f \,x^{4}+2 c e f \,x^{2}+d \,e^{2} x^{2}+c \,e^{2}}d x \] Input:

int((b*x^2+a)^(1/2)/(d*x^2+c)^(1/2)/(f*x^2+e)^(3/2),x)
 

Output:

int((sqrt(e + f*x**2)*sqrt(c + d*x**2)*sqrt(a + b*x**2))/(c*e**2 + 2*c*e*f 
*x**2 + c*f**2*x**4 + d*e**2*x**2 + 2*d*e*f*x**4 + d*f**2*x**6),x)