\(\int \frac {e+f x^2}{\sqrt {a-b x^2} \sqrt {c-d x^2}} \, dx\) [42]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 32, antiderivative size = 192 \[ \int \frac {e+f x^2}{\sqrt {a-b x^2} \sqrt {c-d x^2}} \, dx=-\frac {\sqrt {a} f \sqrt {1-\frac {b x^2}{a}} \sqrt {c-d x^2} E\left (\arcsin \left (\frac {\sqrt {b} x}{\sqrt {a}}\right )|\frac {a d}{b c}\right )}{\sqrt {b} d \sqrt {a-b x^2} \sqrt {1-\frac {d x^2}{c}}}+\frac {\sqrt {a} (d e+c f) \sqrt {1-\frac {b x^2}{a}} \sqrt {1-\frac {d x^2}{c}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {b} x}{\sqrt {a}}\right ),\frac {a d}{b c}\right )}{\sqrt {b} d \sqrt {a-b x^2} \sqrt {c-d x^2}} \] Output:

-a^(1/2)*f*(1-b*x^2/a)^(1/2)*(-d*x^2+c)^(1/2)*EllipticE(b^(1/2)*x/a^(1/2), 
(a*d/b/c)^(1/2))/b^(1/2)/d/(-b*x^2+a)^(1/2)/(1-d*x^2/c)^(1/2)+a^(1/2)*(c*f 
+d*e)*(1-b*x^2/a)^(1/2)*(1-d*x^2/c)^(1/2)*EllipticF(b^(1/2)*x/a^(1/2),(a*d 
/b/c)^(1/2))/b^(1/2)/d/(-b*x^2+a)^(1/2)/(-d*x^2+c)^(1/2)
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 3.98 (sec) , antiderivative size = 138, normalized size of antiderivative = 0.72 \[ \int \frac {e+f x^2}{\sqrt {a-b x^2} \sqrt {c-d x^2}} \, dx=-\frac {i \sqrt {1-\frac {b x^2}{a}} \sqrt {1-\frac {d x^2}{c}} \left (-c f E\left (i \text {arcsinh}\left (\sqrt {-\frac {b}{a}} x\right )|\frac {a d}{b c}\right )+(d e+c f) \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {-\frac {b}{a}} x\right ),\frac {a d}{b c}\right )\right )}{\sqrt {-\frac {b}{a}} d \sqrt {a-b x^2} \sqrt {c-d x^2}} \] Input:

Integrate[(e + f*x^2)/(Sqrt[a - b*x^2]*Sqrt[c - d*x^2]),x]
 

Output:

((-I)*Sqrt[1 - (b*x^2)/a]*Sqrt[1 - (d*x^2)/c]*(-(c*f*EllipticE[I*ArcSinh[S 
qrt[-(b/a)]*x], (a*d)/(b*c)]) + (d*e + c*f)*EllipticF[I*ArcSinh[Sqrt[-(b/a 
)]*x], (a*d)/(b*c)]))/(Sqrt[-(b/a)]*d*Sqrt[a - b*x^2]*Sqrt[c - d*x^2])
 

Rubi [A] (verified)

Time = 0.33 (sec) , antiderivative size = 192, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.219, Rules used = {399, 323, 323, 321, 331, 330, 327}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {e+f x^2}{\sqrt {a-b x^2} \sqrt {c-d x^2}} \, dx\)

\(\Big \downarrow \) 399

\(\displaystyle \frac {(a f+b e) \int \frac {1}{\sqrt {a-b x^2} \sqrt {c-d x^2}}dx}{b}-\frac {f \int \frac {\sqrt {a-b x^2}}{\sqrt {c-d x^2}}dx}{b}\)

\(\Big \downarrow \) 323

\(\displaystyle \frac {\sqrt {1-\frac {d x^2}{c}} (a f+b e) \int \frac {1}{\sqrt {a-b x^2} \sqrt {1-\frac {d x^2}{c}}}dx}{b \sqrt {c-d x^2}}-\frac {f \int \frac {\sqrt {a-b x^2}}{\sqrt {c-d x^2}}dx}{b}\)

\(\Big \downarrow \) 323

\(\displaystyle \frac {\sqrt {1-\frac {b x^2}{a}} \sqrt {1-\frac {d x^2}{c}} (a f+b e) \int \frac {1}{\sqrt {1-\frac {b x^2}{a}} \sqrt {1-\frac {d x^2}{c}}}dx}{b \sqrt {a-b x^2} \sqrt {c-d x^2}}-\frac {f \int \frac {\sqrt {a-b x^2}}{\sqrt {c-d x^2}}dx}{b}\)

\(\Big \downarrow \) 321

\(\displaystyle \frac {\sqrt {c} \sqrt {1-\frac {b x^2}{a}} \sqrt {1-\frac {d x^2}{c}} (a f+b e) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {d} x}{\sqrt {c}}\right ),\frac {b c}{a d}\right )}{b \sqrt {d} \sqrt {a-b x^2} \sqrt {c-d x^2}}-\frac {f \int \frac {\sqrt {a-b x^2}}{\sqrt {c-d x^2}}dx}{b}\)

\(\Big \downarrow \) 331

\(\displaystyle \frac {\sqrt {c} \sqrt {1-\frac {b x^2}{a}} \sqrt {1-\frac {d x^2}{c}} (a f+b e) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {d} x}{\sqrt {c}}\right ),\frac {b c}{a d}\right )}{b \sqrt {d} \sqrt {a-b x^2} \sqrt {c-d x^2}}-\frac {f \sqrt {1-\frac {d x^2}{c}} \int \frac {\sqrt {a-b x^2}}{\sqrt {1-\frac {d x^2}{c}}}dx}{b \sqrt {c-d x^2}}\)

\(\Big \downarrow \) 330

\(\displaystyle \frac {\sqrt {c} \sqrt {1-\frac {b x^2}{a}} \sqrt {1-\frac {d x^2}{c}} (a f+b e) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {d} x}{\sqrt {c}}\right ),\frac {b c}{a d}\right )}{b \sqrt {d} \sqrt {a-b x^2} \sqrt {c-d x^2}}-\frac {f \sqrt {a-b x^2} \sqrt {1-\frac {d x^2}{c}} \int \frac {\sqrt {1-\frac {b x^2}{a}}}{\sqrt {1-\frac {d x^2}{c}}}dx}{b \sqrt {1-\frac {b x^2}{a}} \sqrt {c-d x^2}}\)

\(\Big \downarrow \) 327

\(\displaystyle \frac {\sqrt {c} \sqrt {1-\frac {b x^2}{a}} \sqrt {1-\frac {d x^2}{c}} (a f+b e) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {d} x}{\sqrt {c}}\right ),\frac {b c}{a d}\right )}{b \sqrt {d} \sqrt {a-b x^2} \sqrt {c-d x^2}}-\frac {\sqrt {c} f \sqrt {a-b x^2} \sqrt {1-\frac {d x^2}{c}} E\left (\arcsin \left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|\frac {b c}{a d}\right )}{b \sqrt {d} \sqrt {1-\frac {b x^2}{a}} \sqrt {c-d x^2}}\)

Input:

Int[(e + f*x^2)/(Sqrt[a - b*x^2]*Sqrt[c - d*x^2]),x]
 

Output:

-((Sqrt[c]*f*Sqrt[a - b*x^2]*Sqrt[1 - (d*x^2)/c]*EllipticE[ArcSin[(Sqrt[d] 
*x)/Sqrt[c]], (b*c)/(a*d)])/(b*Sqrt[d]*Sqrt[1 - (b*x^2)/a]*Sqrt[c - d*x^2] 
)) + (Sqrt[c]*(b*e + a*f)*Sqrt[1 - (b*x^2)/a]*Sqrt[1 - (d*x^2)/c]*Elliptic 
F[ArcSin[(Sqrt[d]*x)/Sqrt[c]], (b*c)/(a*d)])/(b*Sqrt[d]*Sqrt[a - b*x^2]*Sq 
rt[c - d*x^2])
 

Defintions of rubi rules used

rule 321
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> S 
imp[(1/(Sqrt[a]*Sqrt[c]*Rt[-d/c, 2]))*EllipticF[ArcSin[Rt[-d/c, 2]*x], b*(c 
/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 
0] &&  !(NegQ[b/a] && SimplerSqrtQ[-b/a, -d/c])
 

rule 323
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> S 
imp[Sqrt[1 + (d/c)*x^2]/Sqrt[c + d*x^2]   Int[1/(Sqrt[a + b*x^2]*Sqrt[1 + ( 
d/c)*x^2]), x], x] /; FreeQ[{a, b, c, d}, x] &&  !GtQ[c, 0]
 

rule 327
Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[ 
(Sqrt[a]/(Sqrt[c]*Rt[-d/c, 2]))*EllipticE[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d) 
)], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 0]
 

rule 330
Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[ 
Sqrt[a + b*x^2]/Sqrt[1 + (b/a)*x^2]   Int[Sqrt[1 + (b/a)*x^2]/Sqrt[c + d*x^ 
2], x], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &&  !GtQ[a, 
0]
 

rule 331
Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[ 
Sqrt[1 + (d/c)*x^2]/Sqrt[c + d*x^2]   Int[Sqrt[a + b*x^2]/Sqrt[1 + (d/c)*x^ 
2], x], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] &&  !GtQ[c, 0]
 

rule 399
Int[((e_) + (f_.)*(x_)^2)/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_) 
^2]), x_Symbol] :> Simp[f/b   Int[Sqrt[a + b*x^2]/Sqrt[c + d*x^2], x], x] + 
 Simp[(b*e - a*f)/b   Int[1/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]), x], x] /; Fr 
eeQ[{a, b, c, d, e, f}, x] &&  !((PosQ[b/a] && PosQ[d/c]) || (NegQ[b/a] && 
(PosQ[d/c] || (GtQ[a, 0] && ( !GtQ[c, 0] || SimplerSqrtQ[-b/a, -d/c])))))
 
Maple [A] (verified)

Time = 5.75 (sec) , antiderivative size = 160, normalized size of antiderivative = 0.83

method result size
default \(\frac {\left (\operatorname {EllipticF}\left (x \sqrt {\frac {d}{c}}, \sqrt {\frac {b c}{a d}}\right ) a f +\operatorname {EllipticF}\left (x \sqrt {\frac {d}{c}}, \sqrt {\frac {b c}{a d}}\right ) b e -\operatorname {EllipticE}\left (x \sqrt {\frac {d}{c}}, \sqrt {\frac {b c}{a d}}\right ) a f \right ) \sqrt {\frac {-b \,x^{2}+a}{a}}\, \sqrt {\frac {-x^{2} d +c}{c}}\, \sqrt {-b \,x^{2}+a}\, \sqrt {-x^{2} d +c}}{b \sqrt {\frac {d}{c}}\, \left (b d \,x^{4}-a d \,x^{2}-x^{2} b c +a c \right )}\) \(160\)
elliptic \(\frac {\sqrt {\left (-x^{2} d +c \right ) \left (-b \,x^{2}+a \right )}\, \left (\frac {e \sqrt {1-\frac {d \,x^{2}}{c}}\, \sqrt {1-\frac {b \,x^{2}}{a}}\, \operatorname {EllipticF}\left (x \sqrt {\frac {d}{c}}, \sqrt {-1-\frac {-a d -b c}{a d}}\right )}{\sqrt {\frac {d}{c}}\, \sqrt {b d \,x^{4}-a d \,x^{2}-x^{2} b c +a c}}+\frac {f a \sqrt {1-\frac {d \,x^{2}}{c}}\, \sqrt {1-\frac {b \,x^{2}}{a}}\, \left (\operatorname {EllipticF}\left (x \sqrt {\frac {d}{c}}, \sqrt {-1-\frac {-a d -b c}{a d}}\right )-\operatorname {EllipticE}\left (x \sqrt {\frac {d}{c}}, \sqrt {-1-\frac {-a d -b c}{a d}}\right )\right )}{\sqrt {\frac {d}{c}}\, \sqrt {b d \,x^{4}-a d \,x^{2}-x^{2} b c +a c}\, b}\right )}{\sqrt {-x^{2} d +c}\, \sqrt {-b \,x^{2}+a}}\) \(264\)

Input:

int((f*x^2+e)/(-b*x^2+a)^(1/2)/(-d*x^2+c)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

(EllipticF(x*(1/c*d)^(1/2),(b*c/a/d)^(1/2))*a*f+EllipticF(x*(1/c*d)^(1/2), 
(b*c/a/d)^(1/2))*b*e-EllipticE(x*(1/c*d)^(1/2),(b*c/a/d)^(1/2))*a*f)*((-b* 
x^2+a)/a)^(1/2)*((-d*x^2+c)/c)^(1/2)*(-b*x^2+a)^(1/2)*(-d*x^2+c)^(1/2)/b/( 
1/c*d)^(1/2)/(b*d*x^4-a*d*x^2-b*c*x^2+a*c)
 

Fricas [A] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 126, normalized size of antiderivative = 0.66 \[ \int \frac {e+f x^2}{\sqrt {a-b x^2} \sqrt {c-d x^2}} \, dx=\frac {\sqrt {b d} a^{2} f x \sqrt {\frac {a}{b}} E(\arcsin \left (\frac {\sqrt {\frac {a}{b}}}{x}\right )\,|\,\frac {b c}{a d}) + \sqrt {-b x^{2} + a} \sqrt {-d x^{2} + c} a b f - {\left (b^{2} e + a^{2} f\right )} \sqrt {b d} x \sqrt {\frac {a}{b}} F(\arcsin \left (\frac {\sqrt {\frac {a}{b}}}{x}\right )\,|\,\frac {b c}{a d})}{a b^{2} d x} \] Input:

integrate((f*x^2+e)/(-b*x^2+a)^(1/2)/(-d*x^2+c)^(1/2),x, algorithm="fricas 
")
 

Output:

(sqrt(b*d)*a^2*f*x*sqrt(a/b)*elliptic_e(arcsin(sqrt(a/b)/x), b*c/(a*d)) + 
sqrt(-b*x^2 + a)*sqrt(-d*x^2 + c)*a*b*f - (b^2*e + a^2*f)*sqrt(b*d)*x*sqrt 
(a/b)*elliptic_f(arcsin(sqrt(a/b)/x), b*c/(a*d)))/(a*b^2*d*x)
 

Sympy [F]

\[ \int \frac {e+f x^2}{\sqrt {a-b x^2} \sqrt {c-d x^2}} \, dx=\int \frac {e + f x^{2}}{\sqrt {a - b x^{2}} \sqrt {c - d x^{2}}}\, dx \] Input:

integrate((f*x**2+e)/(-b*x**2+a)**(1/2)/(-d*x**2+c)**(1/2),x)
 

Output:

Integral((e + f*x**2)/(sqrt(a - b*x**2)*sqrt(c - d*x**2)), x)
 

Maxima [F]

\[ \int \frac {e+f x^2}{\sqrt {a-b x^2} \sqrt {c-d x^2}} \, dx=\int { \frac {f x^{2} + e}{\sqrt {-b x^{2} + a} \sqrt {-d x^{2} + c}} \,d x } \] Input:

integrate((f*x^2+e)/(-b*x^2+a)^(1/2)/(-d*x^2+c)^(1/2),x, algorithm="maxima 
")
 

Output:

integrate((f*x^2 + e)/(sqrt(-b*x^2 + a)*sqrt(-d*x^2 + c)), x)
 

Giac [F]

\[ \int \frac {e+f x^2}{\sqrt {a-b x^2} \sqrt {c-d x^2}} \, dx=\int { \frac {f x^{2} + e}{\sqrt {-b x^{2} + a} \sqrt {-d x^{2} + c}} \,d x } \] Input:

integrate((f*x^2+e)/(-b*x^2+a)^(1/2)/(-d*x^2+c)^(1/2),x, algorithm="giac")
 

Output:

integrate((f*x^2 + e)/(sqrt(-b*x^2 + a)*sqrt(-d*x^2 + c)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {e+f x^2}{\sqrt {a-b x^2} \sqrt {c-d x^2}} \, dx=\int \frac {f\,x^2+e}{\sqrt {a-b\,x^2}\,\sqrt {c-d\,x^2}} \,d x \] Input:

int((e + f*x^2)/((a - b*x^2)^(1/2)*(c - d*x^2)^(1/2)),x)
 

Output:

int((e + f*x^2)/((a - b*x^2)^(1/2)*(c - d*x^2)^(1/2)), x)
 

Reduce [F]

\[ \int \frac {e+f x^2}{\sqrt {a-b x^2} \sqrt {c-d x^2}} \, dx=\left (\int \frac {\sqrt {-d \,x^{2}+c}\, \sqrt {-b \,x^{2}+a}\, x^{2}}{b d \,x^{4}-a d \,x^{2}-b c \,x^{2}+a c}d x \right ) f +\left (\int \frac {\sqrt {-d \,x^{2}+c}\, \sqrt {-b \,x^{2}+a}}{b d \,x^{4}-a d \,x^{2}-b c \,x^{2}+a c}d x \right ) e \] Input:

int((f*x^2+e)/(-b*x^2+a)^(1/2)/(-d*x^2+c)^(1/2),x)
 

Output:

int((sqrt(c - d*x**2)*sqrt(a - b*x**2)*x**2)/(a*c - a*d*x**2 - b*c*x**2 + 
b*d*x**4),x)*f + int((sqrt(c - d*x**2)*sqrt(a - b*x**2))/(a*c - a*d*x**2 - 
 b*c*x**2 + b*d*x**4),x)*e