\(\int \frac {x^2}{\sqrt {a+b x^2} \sqrt {c+d x^2} (e+f x^2)} \, dx\) [184]

Optimal result
Mathematica [C] (verified)
Rubi [F]
Maple [A] (verified)
Fricas [F(-1)]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 35, antiderivative size = 205 \[ \int \frac {x^2}{\sqrt {a+b x^2} \sqrt {c+d x^2} \left (e+f x^2\right )} \, dx=-\frac {\sqrt {a} \sqrt {c+d x^2} \operatorname {EllipticF}\left (\arctan \left (\frac {\sqrt {b} x}{\sqrt {a}}\right ),1-\frac {a d}{b c}\right )}{\sqrt {b} (d e-c f) \sqrt {a+b x^2} \sqrt {\frac {a \left (c+d x^2\right )}{c \left (a+b x^2\right )}}}+\frac {c^{3/2} \sqrt {a+b x^2} \operatorname {EllipticPi}\left (1-\frac {c f}{d e},\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right ),1-\frac {b c}{a d}\right )}{a \sqrt {d} (d e-c f) \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {c+d x^2}} \] Output:

-a^(1/2)*(d*x^2+c)^(1/2)*InverseJacobiAM(arctan(b^(1/2)*x/a^(1/2)),(1-a*d/ 
b/c)^(1/2))/b^(1/2)/(-c*f+d*e)/(b*x^2+a)^(1/2)/(a*(d*x^2+c)/c/(b*x^2+a))^( 
1/2)+c^(3/2)*(b*x^2+a)^(1/2)*EllipticPi(d^(1/2)*x/c^(1/2)/(1+d*x^2/c)^(1/2 
),1-c*f/d/e,(1-b*c/a/d)^(1/2))/a/d^(1/2)/(-c*f+d*e)/(c*(b*x^2+a)/a/(d*x^2+ 
c))^(1/2)/(d*x^2+c)^(1/2)
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 2.14 (sec) , antiderivative size = 130, normalized size of antiderivative = 0.63 \[ \int \frac {x^2}{\sqrt {a+b x^2} \sqrt {c+d x^2} \left (e+f x^2\right )} \, dx=-\frac {i \sqrt {1+\frac {b x^2}{a}} \sqrt {1+\frac {d x^2}{c}} \left (\operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {\frac {b}{a}} x\right ),\frac {a d}{b c}\right )-\operatorname {EllipticPi}\left (\frac {a f}{b e},i \text {arcsinh}\left (\sqrt {\frac {b}{a}} x\right ),\frac {a d}{b c}\right )\right )}{\sqrt {\frac {b}{a}} f \sqrt {a+b x^2} \sqrt {c+d x^2}} \] Input:

Integrate[x^2/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]*(e + f*x^2)),x]
 

Output:

((-I)*Sqrt[1 + (b*x^2)/a]*Sqrt[1 + (d*x^2)/c]*(EllipticF[I*ArcSinh[Sqrt[b/ 
a]*x], (a*d)/(b*c)] - EllipticPi[(a*f)/(b*e), I*ArcSinh[Sqrt[b/a]*x], (a*d 
)/(b*c)]))/(Sqrt[b/a]*f*Sqrt[a + b*x^2]*Sqrt[c + d*x^2])
 

Rubi [F]

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^2}{\sqrt {a+b x^2} \sqrt {c+d x^2} \left (e+f x^2\right )} \, dx\)

\(\Big \downarrow \) 450

\(\displaystyle \int \frac {x^2}{\sqrt {a+b x^2} \sqrt {c+d x^2} \left (e+f x^2\right )}dx\)

Input:

Int[x^2/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]*(e + f*x^2)),x]
 

Output:

$Aborted
 

Defintions of rubi rules used

rule 450
Int[((g_.)*(x_))^(m_.)*((a_.) + (b_.)*(x_)^2)^(p_.)*((c_.) + (d_.)*(x_)^2)^ 
(q_.)*((e_.) + (f_.)*(x_)^2)^(r_.), x_Symbol] :> Unintegrable[(g*x)^m*(a + 
b*x^2)^p*(c + d*x^2)^q*(e + f*x^2)^r, x] /; FreeQ[{a, b, c, d, e, f, g, m, 
p, q, r}, x]
 
Maple [A] (verified)

Time = 5.82 (sec) , antiderivative size = 143, normalized size of antiderivative = 0.70

method result size
default \(\frac {\left (\operatorname {EllipticF}\left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right )-\operatorname {EllipticPi}\left (x \sqrt {-\frac {b}{a}}, \frac {a f}{b e}, \frac {\sqrt {-\frac {d}{c}}}{\sqrt {-\frac {b}{a}}}\right )\right ) \sqrt {\frac {x^{2} d +c}{c}}\, \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {x^{2} d +c}\, \sqrt {b \,x^{2}+a}}{f \sqrt {-\frac {b}{a}}\, \left (b d \,x^{4}+a d \,x^{2}+x^{2} b c +a c \right )}\) \(143\)
elliptic \(\frac {\sqrt {\left (b \,x^{2}+a \right ) \left (x^{2} d +c \right )}\, \left (\frac {\sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \operatorname {EllipticF}\left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )}{f \sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+x^{2} b c +a c}}-\frac {\sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \operatorname {EllipticPi}\left (x \sqrt {-\frac {b}{a}}, \frac {a f}{b e}, \frac {\sqrt {-\frac {d}{c}}}{\sqrt {-\frac {b}{a}}}\right )}{f \sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+x^{2} b c +a c}}\right )}{\sqrt {b \,x^{2}+a}\, \sqrt {x^{2} d +c}}\) \(225\)

Input:

int(x^2/(b*x^2+a)^(1/2)/(d*x^2+c)^(1/2)/(f*x^2+e),x,method=_RETURNVERBOSE)
 

Output:

(EllipticF(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))-EllipticPi(x*(-b/a)^(1/2),a*f/b 
/e,(-1/c*d)^(1/2)/(-b/a)^(1/2)))/f*((d*x^2+c)/c)^(1/2)*((b*x^2+a)/a)^(1/2) 
*(d*x^2+c)^(1/2)*(b*x^2+a)^(1/2)/(-b/a)^(1/2)/(b*d*x^4+a*d*x^2+b*c*x^2+a*c 
)
 

Fricas [F(-1)]

Timed out. \[ \int \frac {x^2}{\sqrt {a+b x^2} \sqrt {c+d x^2} \left (e+f x^2\right )} \, dx=\text {Timed out} \] Input:

integrate(x^2/(b*x^2+a)^(1/2)/(d*x^2+c)^(1/2)/(f*x^2+e),x, algorithm="fric 
as")
 

Output:

Timed out
 

Sympy [F]

\[ \int \frac {x^2}{\sqrt {a+b x^2} \sqrt {c+d x^2} \left (e+f x^2\right )} \, dx=\int \frac {x^{2}}{\sqrt {a + b x^{2}} \sqrt {c + d x^{2}} \left (e + f x^{2}\right )}\, dx \] Input:

integrate(x**2/(b*x**2+a)**(1/2)/(d*x**2+c)**(1/2)/(f*x**2+e),x)
 

Output:

Integral(x**2/(sqrt(a + b*x**2)*sqrt(c + d*x**2)*(e + f*x**2)), x)
 

Maxima [F]

\[ \int \frac {x^2}{\sqrt {a+b x^2} \sqrt {c+d x^2} \left (e+f x^2\right )} \, dx=\int { \frac {x^{2}}{\sqrt {b x^{2} + a} \sqrt {d x^{2} + c} {\left (f x^{2} + e\right )}} \,d x } \] Input:

integrate(x^2/(b*x^2+a)^(1/2)/(d*x^2+c)^(1/2)/(f*x^2+e),x, algorithm="maxi 
ma")
 

Output:

integrate(x^2/(sqrt(b*x^2 + a)*sqrt(d*x^2 + c)*(f*x^2 + e)), x)
 

Giac [F]

\[ \int \frac {x^2}{\sqrt {a+b x^2} \sqrt {c+d x^2} \left (e+f x^2\right )} \, dx=\int { \frac {x^{2}}{\sqrt {b x^{2} + a} \sqrt {d x^{2} + c} {\left (f x^{2} + e\right )}} \,d x } \] Input:

integrate(x^2/(b*x^2+a)^(1/2)/(d*x^2+c)^(1/2)/(f*x^2+e),x, algorithm="giac 
")
 

Output:

integrate(x^2/(sqrt(b*x^2 + a)*sqrt(d*x^2 + c)*(f*x^2 + e)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {x^2}{\sqrt {a+b x^2} \sqrt {c+d x^2} \left (e+f x^2\right )} \, dx=\int \frac {x^2}{\sqrt {b\,x^2+a}\,\sqrt {d\,x^2+c}\,\left (f\,x^2+e\right )} \,d x \] Input:

int(x^2/((a + b*x^2)^(1/2)*(c + d*x^2)^(1/2)*(e + f*x^2)),x)
 

Output:

int(x^2/((a + b*x^2)^(1/2)*(c + d*x^2)^(1/2)*(e + f*x^2)), x)
 

Reduce [F]

\[ \int \frac {x^2}{\sqrt {a+b x^2} \sqrt {c+d x^2} \left (e+f x^2\right )} \, dx=\int \frac {\sqrt {d \,x^{2}+c}\, \sqrt {b \,x^{2}+a}\, x^{2}}{b d f \,x^{6}+a d f \,x^{4}+b c f \,x^{4}+b d e \,x^{4}+a c f \,x^{2}+a d e \,x^{2}+b c e \,x^{2}+a c e}d x \] Input:

int(x^2/(b*x^2+a)^(1/2)/(d*x^2+c)^(1/2)/(f*x^2+e),x)
 

Output:

int((sqrt(c + d*x**2)*sqrt(a + b*x**2)*x**2)/(a*c*e + a*c*f*x**2 + a*d*e*x 
**2 + a*d*f*x**4 + b*c*e*x**2 + b*c*f*x**4 + b*d*e*x**4 + b*d*f*x**6),x)