\(\int \frac {1}{\sqrt {a+b x^2} \sqrt {c+d x^2} \sqrt {e+f x^2}} \, dx\) [362]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [F]
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 34, antiderivative size = 145 \[ \int \frac {1}{\sqrt {a+b x^2} \sqrt {c+d x^2} \sqrt {e+f x^2}} \, dx=\frac {\sqrt {c+d x^2} \sqrt {\frac {a \left (e+f x^2\right )}{e \left (a+b x^2\right )}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {b c-a d} x}{\sqrt {c} \sqrt {a+b x^2}}\right ),\frac {c (b e-a f)}{(b c-a d) e}\right )}{\sqrt {c} \sqrt {b c-a d} \sqrt {\frac {a \left (c+d x^2\right )}{c \left (a+b x^2\right )}} \sqrt {e+f x^2}} \] Output:

(d*x^2+c)^(1/2)*(a*(f*x^2+e)/e/(b*x^2+a))^(1/2)*EllipticF((-a*d+b*c)^(1/2) 
*x/c^(1/2)/(b*x^2+a)^(1/2),(c*(-a*f+b*e)/(-a*d+b*c)/e)^(1/2))/c^(1/2)/(-a* 
d+b*c)^(1/2)/(a*(d*x^2+c)/c/(b*x^2+a))^(1/2)/(f*x^2+e)^(1/2)
 

Mathematica [A] (verified)

Time = 2.98 (sec) , antiderivative size = 148, normalized size of antiderivative = 1.02 \[ \int \frac {1}{\sqrt {a+b x^2} \sqrt {c+d x^2} \sqrt {e+f x^2}} \, dx=\frac {\sqrt {e} \sqrt {c+d x^2} \sqrt {\frac {a \left (e+f x^2\right )}{e \left (a+b x^2\right )}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {b e-a f} x}{\sqrt {e} \sqrt {a+b x^2}}\right ),\frac {(b c-a d) e}{c (b e-a f)}\right )}{c \sqrt {b e-a f} \sqrt {\frac {a \left (c+d x^2\right )}{c \left (a+b x^2\right )}} \sqrt {e+f x^2}} \] Input:

Integrate[1/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]*Sqrt[e + f*x^2]),x]
 

Output:

(Sqrt[e]*Sqrt[c + d*x^2]*Sqrt[(a*(e + f*x^2))/(e*(a + b*x^2))]*EllipticF[A 
rcSin[(Sqrt[b*e - a*f]*x)/(Sqrt[e]*Sqrt[a + b*x^2])], ((b*c - a*d)*e)/(c*( 
b*e - a*f))])/(c*Sqrt[b*e - a*f]*Sqrt[(a*(c + d*x^2))/(c*(a + b*x^2))]*Sqr 
t[e + f*x^2])
 

Rubi [A] (verified)

Time = 0.26 (sec) , antiderivative size = 148, normalized size of antiderivative = 1.02, number of steps used = 3, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.059, Rules used = {427, 321}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\sqrt {a+b x^2} \sqrt {c+d x^2} \sqrt {e+f x^2}} \, dx\)

\(\Big \downarrow \) 427

\(\displaystyle \frac {\sqrt {c+d x^2} \sqrt {\frac {a \left (e+f x^2\right )}{e \left (a+b x^2\right )}} \int \frac {1}{\sqrt {1-\frac {(b c-a d) x^2}{c \left (b x^2+a\right )}} \sqrt {1-\frac {(b e-a f) x^2}{e \left (b x^2+a\right )}}}d\frac {x}{\sqrt {b x^2+a}}}{c \sqrt {e+f x^2} \sqrt {\frac {a \left (c+d x^2\right )}{c \left (a+b x^2\right )}}}\)

\(\Big \downarrow \) 321

\(\displaystyle \frac {\sqrt {e} \sqrt {c+d x^2} \sqrt {\frac {a \left (e+f x^2\right )}{e \left (a+b x^2\right )}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {b e-a f} x}{\sqrt {e} \sqrt {b x^2+a}}\right ),\frac {(b c-a d) e}{c (b e-a f)}\right )}{c \sqrt {e+f x^2} \sqrt {b e-a f} \sqrt {\frac {a \left (c+d x^2\right )}{c \left (a+b x^2\right )}}}\)

Input:

Int[1/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]*Sqrt[e + f*x^2]),x]
 

Output:

(Sqrt[e]*Sqrt[c + d*x^2]*Sqrt[(a*(e + f*x^2))/(e*(a + b*x^2))]*EllipticF[A 
rcSin[(Sqrt[b*e - a*f]*x)/(Sqrt[e]*Sqrt[a + b*x^2])], ((b*c - a*d)*e)/(c*( 
b*e - a*f))])/(c*Sqrt[b*e - a*f]*Sqrt[(a*(c + d*x^2))/(c*(a + b*x^2))]*Sqr 
t[e + f*x^2])
 

Defintions of rubi rules used

rule 321
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> S 
imp[(1/(Sqrt[a]*Sqrt[c]*Rt[-d/c, 2]))*EllipticF[ArcSin[Rt[-d/c, 2]*x], b*(c 
/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 
0] &&  !(NegQ[b/a] && SimplerSqrtQ[-b/a, -d/c])
 

rule 427
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]*Sqrt[(e_) + (f_. 
)*(x_)^2]), x_Symbol] :> Simp[Sqrt[c + d*x^2]*(Sqrt[a*((e + f*x^2)/(e*(a + 
b*x^2)))]/(c*Sqrt[e + f*x^2]*Sqrt[a*((c + d*x^2)/(c*(a + b*x^2)))]))   Subs 
t[Int[1/(Sqrt[1 - (b*c - a*d)*(x^2/c)]*Sqrt[1 - (b*e - a*f)*(x^2/e)]), x], 
x, x/Sqrt[a + b*x^2]], x] /; FreeQ[{a, b, c, d, e, f}, x]
 
Maple [F]

\[\int \frac {1}{\sqrt {b \,x^{2}+a}\, \sqrt {x^{2} d +c}\, \sqrt {f \,x^{2}+e}}d x\]

Input:

int(1/(b*x^2+a)^(1/2)/(d*x^2+c)^(1/2)/(f*x^2+e)^(1/2),x)
 

Output:

int(1/(b*x^2+a)^(1/2)/(d*x^2+c)^(1/2)/(f*x^2+e)^(1/2),x)
 

Fricas [F]

\[ \int \frac {1}{\sqrt {a+b x^2} \sqrt {c+d x^2} \sqrt {e+f x^2}} \, dx=\int { \frac {1}{\sqrt {b x^{2} + a} \sqrt {d x^{2} + c} \sqrt {f x^{2} + e}} \,d x } \] Input:

integrate(1/(b*x^2+a)^(1/2)/(d*x^2+c)^(1/2)/(f*x^2+e)^(1/2),x, algorithm=" 
fricas")
 

Output:

integral(sqrt(b*x^2 + a)*sqrt(d*x^2 + c)*sqrt(f*x^2 + e)/(b*d*f*x^6 + (b*d 
*e + (b*c + a*d)*f)*x^4 + a*c*e + (a*c*f + (b*c + a*d)*e)*x^2), x)
 

Sympy [F]

\[ \int \frac {1}{\sqrt {a+b x^2} \sqrt {c+d x^2} \sqrt {e+f x^2}} \, dx=\int \frac {1}{\sqrt {a + b x^{2}} \sqrt {c + d x^{2}} \sqrt {e + f x^{2}}}\, dx \] Input:

integrate(1/(b*x**2+a)**(1/2)/(d*x**2+c)**(1/2)/(f*x**2+e)**(1/2),x)
 

Output:

Integral(1/(sqrt(a + b*x**2)*sqrt(c + d*x**2)*sqrt(e + f*x**2)), x)
 

Maxima [F]

\[ \int \frac {1}{\sqrt {a+b x^2} \sqrt {c+d x^2} \sqrt {e+f x^2}} \, dx=\int { \frac {1}{\sqrt {b x^{2} + a} \sqrt {d x^{2} + c} \sqrt {f x^{2} + e}} \,d x } \] Input:

integrate(1/(b*x^2+a)^(1/2)/(d*x^2+c)^(1/2)/(f*x^2+e)^(1/2),x, algorithm=" 
maxima")
 

Output:

integrate(1/(sqrt(b*x^2 + a)*sqrt(d*x^2 + c)*sqrt(f*x^2 + e)), x)
 

Giac [F]

\[ \int \frac {1}{\sqrt {a+b x^2} \sqrt {c+d x^2} \sqrt {e+f x^2}} \, dx=\int { \frac {1}{\sqrt {b x^{2} + a} \sqrt {d x^{2} + c} \sqrt {f x^{2} + e}} \,d x } \] Input:

integrate(1/(b*x^2+a)^(1/2)/(d*x^2+c)^(1/2)/(f*x^2+e)^(1/2),x, algorithm=" 
giac")
 

Output:

integrate(1/(sqrt(b*x^2 + a)*sqrt(d*x^2 + c)*sqrt(f*x^2 + e)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt {a+b x^2} \sqrt {c+d x^2} \sqrt {e+f x^2}} \, dx=\int \frac {1}{\sqrt {b\,x^2+a}\,\sqrt {d\,x^2+c}\,\sqrt {f\,x^2+e}} \,d x \] Input:

int(1/((a + b*x^2)^(1/2)*(c + d*x^2)^(1/2)*(e + f*x^2)^(1/2)),x)
 

Output:

int(1/((a + b*x^2)^(1/2)*(c + d*x^2)^(1/2)*(e + f*x^2)^(1/2)), x)
 

Reduce [F]

\[ \int \frac {1}{\sqrt {a+b x^2} \sqrt {c+d x^2} \sqrt {e+f x^2}} \, dx=\int \frac {\sqrt {f \,x^{2}+e}\, \sqrt {d \,x^{2}+c}\, \sqrt {b \,x^{2}+a}}{b d f \,x^{6}+a d f \,x^{4}+b c f \,x^{4}+b d e \,x^{4}+a c f \,x^{2}+a d e \,x^{2}+b c e \,x^{2}+a c e}d x \] Input:

int(1/(b*x^2+a)^(1/2)/(d*x^2+c)^(1/2)/(f*x^2+e)^(1/2),x)
 

Output:

int((sqrt(e + f*x**2)*sqrt(c + d*x**2)*sqrt(a + b*x**2))/(a*c*e + a*c*f*x* 
*2 + a*d*e*x**2 + a*d*f*x**4 + b*c*e*x**2 + b*c*f*x**4 + b*d*e*x**4 + b*d* 
f*x**6),x)