\(\int \frac {A+B x^2+C x^4+D x^6}{(a+b x^2)^{9/4}} \, dx\) [147]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [F]
Fricas [F]
Sympy [C] (verification not implemented)
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 29, antiderivative size = 177 \[ \int \frac {A+B x^2+C x^4+D x^6}{\left (a+b x^2\right )^{9/4}} \, dx=\frac {2 \left (\frac {A}{a}-\frac {b^2 B-a b C+a^2 D}{b^3}\right ) x}{5 \left (a+b x^2\right )^{5/4}}+\frac {2 (5 b C-12 a D) x}{5 b^3 \sqrt [4]{a+b x^2}}+\frac {2 D x \left (a+b x^2\right )^{3/4}}{5 b^3}+\frac {2 \left (3 A b^3+2 a \left (b^2 B-6 a b C+12 a^2 D\right )\right ) \sqrt [4]{1+\frac {b x^2}{a}} E\left (\left .\frac {1}{2} \arctan \left (\frac {\sqrt {b} x}{\sqrt {a}}\right )\right |2\right )}{5 a^{3/2} b^{7/2} \sqrt [4]{a+b x^2}} \] Output:

2/5*(A/a-(B*b^2-C*a*b+D*a^2)/b^3)*x/(b*x^2+a)^(5/4)+2/5*(5*C*b-12*D*a)*x/b 
^3/(b*x^2+a)^(1/4)+2/5*D*x*(b*x^2+a)^(3/4)/b^3+2/5*(3*A*b^3+2*a*(B*b^2-6*C 
*a*b+12*D*a^2))*(1+b*x^2/a)^(1/4)*EllipticE(sin(1/2*arctan(b^(1/2)*x/a^(1/ 
2))),2^(1/2))/a^(3/2)/b^(7/2)/(b*x^2+a)^(1/4)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.14 (sec) , antiderivative size = 161, normalized size of antiderivative = 0.91 \[ \int \frac {A+B x^2+C x^4+D x^6}{\left (a+b x^2\right )^{9/4}} \, dx=\frac {2 x \left (12 a^4 D+3 A b^4 x^2+2 a b^3 \left (2 A+B x^2\right )+a^3 b \left (-6 C+14 D x^2\right )+a^2 b^2 \left (B-7 C x^2+D x^4\right )\right )-\left (3 A b^3+2 a \left (b^2 B-6 a b C+12 a^2 D\right )\right ) x \left (a+b x^2\right ) \sqrt [4]{1+\frac {b x^2}{a}} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {3}{2},-\frac {b x^2}{a}\right )}{5 a^2 b^3 \left (a+b x^2\right )^{5/4}} \] Input:

Integrate[(A + B*x^2 + C*x^4 + D*x^6)/(a + b*x^2)^(9/4),x]
 

Output:

(2*x*(12*a^4*D + 3*A*b^4*x^2 + 2*a*b^3*(2*A + B*x^2) + a^3*b*(-6*C + 14*D* 
x^2) + a^2*b^2*(B - 7*C*x^2 + D*x^4)) - (3*A*b^3 + 2*a*(b^2*B - 6*a*b*C + 
12*a^2*D))*x*(a + b*x^2)*(1 + (b*x^2)/a)^(1/4)*Hypergeometric2F1[1/4, 1/2, 
 3/2, -((b*x^2)/a)])/(5*a^2*b^3*(a + b*x^2)^(5/4))
 

Rubi [A] (verified)

Time = 0.48 (sec) , antiderivative size = 230, normalized size of antiderivative = 1.30, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.276, Rules used = {2345, 27, 1471, 27, 299, 227, 225, 212}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+B x^2+C x^4+D x^6}{\left (a+b x^2\right )^{9/4}} \, dx\)

\(\Big \downarrow \) 2345

\(\displaystyle \frac {2 x \left (A-\frac {a \left (a^2 D-a b C+b^2 B\right )}{b^3}\right )}{5 a \left (a+b x^2\right )^{5/4}}-\frac {2 \int -\frac {\frac {5 a D x^4}{b}+\frac {5 a (b C-a D) x^2}{b^2}+3 A+\frac {2 a \left (D a^2-b C a+b^2 B\right )}{b^3}}{2 \left (b x^2+a\right )^{5/4}}dx}{5 a}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {\frac {5 a D x^4}{b}+\frac {5 a (b C-a D) x^2}{b^2}+3 A+\frac {2 a \left (D a^2-b C a+b^2 B\right )}{b^3}}{\left (b x^2+a\right )^{5/4}}dx}{5 a}+\frac {2 x \left (A-\frac {a \left (a^2 D-a b C+b^2 B\right )}{b^3}\right )}{5 a \left (a+b x^2\right )^{5/4}}\)

\(\Big \downarrow \) 1471

\(\displaystyle \frac {\frac {2 x \left (\frac {12 a^2 D-7 a b C+2 b^2 B}{b^3}+\frac {3 A}{a}\right )}{\sqrt [4]{a+b x^2}}-\frac {2 \int \frac {b^2 \left (3 A+\frac {2 a \left (11 D a^2-6 b C a+b^2 B\right )}{b^3}\right )-5 a^2 D x^2}{2 b^2 \sqrt [4]{b x^2+a}}dx}{a}}{5 a}+\frac {2 x \left (A-\frac {a \left (a^2 D-a b C+b^2 B\right )}{b^3}\right )}{5 a \left (a+b x^2\right )^{5/4}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {2 x \left (\frac {12 a^2 D-7 a b C+2 b^2 B}{b^3}+\frac {3 A}{a}\right )}{\sqrt [4]{a+b x^2}}-\frac {\int \frac {3 A b^2-5 a^2 D x^2+2 a \left (\frac {11 D a^2}{b}-6 C a+b B\right )}{\sqrt [4]{b x^2+a}}dx}{a b^2}}{5 a}+\frac {2 x \left (A-\frac {a \left (a^2 D-a b C+b^2 B\right )}{b^3}\right )}{5 a \left (a+b x^2\right )^{5/4}}\)

\(\Big \downarrow \) 299

\(\displaystyle \frac {\frac {2 x \left (\frac {12 a^2 D-7 a b C+2 b^2 B}{b^3}+\frac {3 A}{a}\right )}{\sqrt [4]{a+b x^2}}-\frac {\frac {\left (2 a \left (12 a^2 D-6 a b C+b^2 B\right )+3 A b^3\right ) \int \frac {1}{\sqrt [4]{b x^2+a}}dx}{b}-\frac {2 a^2 D x \left (a+b x^2\right )^{3/4}}{b}}{a b^2}}{5 a}+\frac {2 x \left (A-\frac {a \left (a^2 D-a b C+b^2 B\right )}{b^3}\right )}{5 a \left (a+b x^2\right )^{5/4}}\)

\(\Big \downarrow \) 227

\(\displaystyle \frac {\frac {2 x \left (\frac {12 a^2 D-7 a b C+2 b^2 B}{b^3}+\frac {3 A}{a}\right )}{\sqrt [4]{a+b x^2}}-\frac {\frac {\sqrt [4]{\frac {b x^2}{a}+1} \left (2 a \left (12 a^2 D-6 a b C+b^2 B\right )+3 A b^3\right ) \int \frac {1}{\sqrt [4]{\frac {b x^2}{a}+1}}dx}{b \sqrt [4]{a+b x^2}}-\frac {2 a^2 D x \left (a+b x^2\right )^{3/4}}{b}}{a b^2}}{5 a}+\frac {2 x \left (A-\frac {a \left (a^2 D-a b C+b^2 B\right )}{b^3}\right )}{5 a \left (a+b x^2\right )^{5/4}}\)

\(\Big \downarrow \) 225

\(\displaystyle \frac {\frac {2 x \left (\frac {12 a^2 D-7 a b C+2 b^2 B}{b^3}+\frac {3 A}{a}\right )}{\sqrt [4]{a+b x^2}}-\frac {\frac {\sqrt [4]{\frac {b x^2}{a}+1} \left (2 a \left (12 a^2 D-6 a b C+b^2 B\right )+3 A b^3\right ) \left (\frac {2 x}{\sqrt [4]{\frac {b x^2}{a}+1}}-\int \frac {1}{\left (\frac {b x^2}{a}+1\right )^{5/4}}dx\right )}{b \sqrt [4]{a+b x^2}}-\frac {2 a^2 D x \left (a+b x^2\right )^{3/4}}{b}}{a b^2}}{5 a}+\frac {2 x \left (A-\frac {a \left (a^2 D-a b C+b^2 B\right )}{b^3}\right )}{5 a \left (a+b x^2\right )^{5/4}}\)

\(\Big \downarrow \) 212

\(\displaystyle \frac {\frac {2 x \left (\frac {12 a^2 D-7 a b C+2 b^2 B}{b^3}+\frac {3 A}{a}\right )}{\sqrt [4]{a+b x^2}}-\frac {\frac {\sqrt [4]{\frac {b x^2}{a}+1} \left (\frac {2 x}{\sqrt [4]{\frac {b x^2}{a}+1}}-\frac {2 \sqrt {a} E\left (\left .\frac {1}{2} \arctan \left (\frac {\sqrt {b} x}{\sqrt {a}}\right )\right |2\right )}{\sqrt {b}}\right ) \left (2 a \left (12 a^2 D-6 a b C+b^2 B\right )+3 A b^3\right )}{b \sqrt [4]{a+b x^2}}-\frac {2 a^2 D x \left (a+b x^2\right )^{3/4}}{b}}{a b^2}}{5 a}+\frac {2 x \left (A-\frac {a \left (a^2 D-a b C+b^2 B\right )}{b^3}\right )}{5 a \left (a+b x^2\right )^{5/4}}\)

Input:

Int[(A + B*x^2 + C*x^4 + D*x^6)/(a + b*x^2)^(9/4),x]
 

Output:

(2*(A - (a*(b^2*B - a*b*C + a^2*D))/b^3)*x)/(5*a*(a + b*x^2)^(5/4)) + ((2* 
((3*A)/a + (2*b^2*B - 7*a*b*C + 12*a^2*D)/b^3)*x)/(a + b*x^2)^(1/4) - ((-2 
*a^2*D*x*(a + b*x^2)^(3/4))/b + ((3*A*b^3 + 2*a*(b^2*B - 6*a*b*C + 12*a^2* 
D))*(1 + (b*x^2)/a)^(1/4)*((2*x)/(1 + (b*x^2)/a)^(1/4) - (2*Sqrt[a]*Ellipt 
icE[ArcTan[(Sqrt[b]*x)/Sqrt[a]]/2, 2])/Sqrt[b]))/(b*(a + b*x^2)^(1/4)))/(a 
*b^2))/(5*a)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 212
Int[((a_) + (b_.)*(x_)^2)^(-5/4), x_Symbol] :> Simp[(2/(a^(5/4)*Rt[b/a, 2]) 
)*EllipticE[(1/2)*ArcTan[Rt[b/a, 2]*x], 2], x] /; FreeQ[{a, b}, x] && GtQ[a 
, 0] && PosQ[b/a]
 

rule 225
Int[((a_) + (b_.)*(x_)^2)^(-1/4), x_Symbol] :> Simp[2*(x/(a + b*x^2)^(1/4)) 
, x] - Simp[a   Int[1/(a + b*x^2)^(5/4), x], x] /; FreeQ[{a, b}, x] && GtQ[ 
a, 0] && PosQ[b/a]
 

rule 227
Int[((a_) + (b_.)*(x_)^2)^(-1/4), x_Symbol] :> Simp[(1 + b*(x^2/a))^(1/4)/( 
a + b*x^2)^(1/4)   Int[1/(1 + b*(x^2/a))^(1/4), x], x] /; FreeQ[{a, b}, x] 
&& PosQ[a]
 

rule 299
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2), x_Symbol] :> Simp[d*x 
*((a + b*x^2)^(p + 1)/(b*(2*p + 3))), x] - Simp[(a*d - b*c*(2*p + 3))/(b*(2 
*p + 3))   Int[(a + b*x^2)^p, x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - 
 a*d, 0] && NeQ[2*p + 3, 0]
 

rule 1471
Int[((d_) + (e_.)*(x_)^2)^(q_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), 
x_Symbol] :> With[{Qx = PolynomialQuotient[(a + b*x^2 + c*x^4)^p, d + e*x^2 
, x], R = Coeff[PolynomialRemainder[(a + b*x^2 + c*x^4)^p, d + e*x^2, x], x 
, 0]}, Simp[(-R)*x*((d + e*x^2)^(q + 1)/(2*d*(q + 1))), x] + Simp[1/(2*d*(q 
 + 1))   Int[(d + e*x^2)^(q + 1)*ExpandToSum[2*d*(q + 1)*Qx + R*(2*q + 3), 
x], x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^ 
2 - b*d*e + a*e^2, 0] && IGtQ[p, 0] && LtQ[q, -1]
 

rule 2345
Int[(Pq_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = PolynomialQuot 
ient[Pq, a + b*x^2, x], f = Coeff[PolynomialRemainder[Pq, a + b*x^2, x], x, 
 0], g = Coeff[PolynomialRemainder[Pq, a + b*x^2, x], x, 1]}, Simp[(a*g - b 
*f*x)*((a + b*x^2)^(p + 1)/(2*a*b*(p + 1))), x] + Simp[1/(2*a*(p + 1))   In 
t[(a + b*x^2)^(p + 1)*ExpandToSum[2*a*(p + 1)*Q + f*(2*p + 3), x], x], x]] 
/; FreeQ[{a, b}, x] && PolyQ[Pq, x] && LtQ[p, -1]
 
Maple [F]

\[\int \frac {D x^{6}+C \,x^{4}+x^{2} B +A}{\left (b \,x^{2}+a \right )^{\frac {9}{4}}}d x\]

Input:

int((D*x^6+C*x^4+B*x^2+A)/(b*x^2+a)^(9/4),x)
 

Output:

int((D*x^6+C*x^4+B*x^2+A)/(b*x^2+a)^(9/4),x)
 

Fricas [F]

\[ \int \frac {A+B x^2+C x^4+D x^6}{\left (a+b x^2\right )^{9/4}} \, dx=\int { \frac {D x^{6} + C x^{4} + B x^{2} + A}{{\left (b x^{2} + a\right )}^{\frac {9}{4}}} \,d x } \] Input:

integrate((D*x^6+C*x^4+B*x^2+A)/(b*x^2+a)^(9/4),x, algorithm="fricas")
 

Output:

integral((D*x^6 + C*x^4 + B*x^2 + A)*(b*x^2 + a)^(3/4)/(b^3*x^6 + 3*a*b^2* 
x^4 + 3*a^2*b*x^2 + a^3), x)
 

Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 7.73 (sec) , antiderivative size = 117, normalized size of antiderivative = 0.66 \[ \int \frac {A+B x^2+C x^4+D x^6}{\left (a+b x^2\right )^{9/4}} \, dx=\frac {A x {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, \frac {9}{4} \\ \frac {3}{2} \end {matrix}\middle | {\frac {b x^{2} e^{i \pi }}{a}} \right )}}{a^{\frac {9}{4}}} + \frac {B x^{3} {{}_{2}F_{1}\left (\begin {matrix} \frac {3}{2}, \frac {9}{4} \\ \frac {5}{2} \end {matrix}\middle | {\frac {b x^{2} e^{i \pi }}{a}} \right )}}{3 a^{\frac {9}{4}}} + \frac {C x^{5} {{}_{2}F_{1}\left (\begin {matrix} \frac {9}{4}, \frac {5}{2} \\ \frac {7}{2} \end {matrix}\middle | {\frac {b x^{2} e^{i \pi }}{a}} \right )}}{5 a^{\frac {9}{4}}} + \frac {D x^{7} {{}_{2}F_{1}\left (\begin {matrix} \frac {9}{4}, \frac {7}{2} \\ \frac {9}{2} \end {matrix}\middle | {\frac {b x^{2} e^{i \pi }}{a}} \right )}}{7 a^{\frac {9}{4}}} \] Input:

integrate((D*x**6+C*x**4+B*x**2+A)/(b*x**2+a)**(9/4),x)
 

Output:

A*x*hyper((1/2, 9/4), (3/2,), b*x**2*exp_polar(I*pi)/a)/a**(9/4) + B*x**3* 
hyper((3/2, 9/4), (5/2,), b*x**2*exp_polar(I*pi)/a)/(3*a**(9/4)) + C*x**5* 
hyper((9/4, 5/2), (7/2,), b*x**2*exp_polar(I*pi)/a)/(5*a**(9/4)) + D*x**7* 
hyper((9/4, 7/2), (9/2,), b*x**2*exp_polar(I*pi)/a)/(7*a**(9/4))
 

Maxima [F]

\[ \int \frac {A+B x^2+C x^4+D x^6}{\left (a+b x^2\right )^{9/4}} \, dx=\int { \frac {D x^{6} + C x^{4} + B x^{2} + A}{{\left (b x^{2} + a\right )}^{\frac {9}{4}}} \,d x } \] Input:

integrate((D*x^6+C*x^4+B*x^2+A)/(b*x^2+a)^(9/4),x, algorithm="maxima")
 

Output:

integrate((D*x^6 + C*x^4 + B*x^2 + A)/(b*x^2 + a)^(9/4), x)
 

Giac [F]

\[ \int \frac {A+B x^2+C x^4+D x^6}{\left (a+b x^2\right )^{9/4}} \, dx=\int { \frac {D x^{6} + C x^{4} + B x^{2} + A}{{\left (b x^{2} + a\right )}^{\frac {9}{4}}} \,d x } \] Input:

integrate((D*x^6+C*x^4+B*x^2+A)/(b*x^2+a)^(9/4),x, algorithm="giac")
 

Output:

integrate((D*x^6 + C*x^4 + B*x^2 + A)/(b*x^2 + a)^(9/4), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B x^2+C x^4+D x^6}{\left (a+b x^2\right )^{9/4}} \, dx=\int \frac {A+B\,x^2+C\,x^4+x^6\,D}{{\left (b\,x^2+a\right )}^{9/4}} \,d x \] Input:

int((A + B*x^2 + C*x^4 + x^6*D)/(a + b*x^2)^(9/4),x)
 

Output:

int((A + B*x^2 + C*x^4 + x^6*D)/(a + b*x^2)^(9/4), x)
 

Reduce [F]

\[ \int \frac {A+B x^2+C x^4+D x^6}{\left (a+b x^2\right )^{9/4}} \, dx=\left (\int \frac {x^{6}}{\left (b \,x^{2}+a \right )^{\frac {1}{4}} a^{2}+2 \left (b \,x^{2}+a \right )^{\frac {1}{4}} a b \,x^{2}+\left (b \,x^{2}+a \right )^{\frac {1}{4}} b^{2} x^{4}}d x \right ) d +\left (\int \frac {x^{4}}{\left (b \,x^{2}+a \right )^{\frac {1}{4}} a^{2}+2 \left (b \,x^{2}+a \right )^{\frac {1}{4}} a b \,x^{2}+\left (b \,x^{2}+a \right )^{\frac {1}{4}} b^{2} x^{4}}d x \right ) c +\left (\int \frac {x^{2}}{\left (b \,x^{2}+a \right )^{\frac {1}{4}} a^{2}+2 \left (b \,x^{2}+a \right )^{\frac {1}{4}} a b \,x^{2}+\left (b \,x^{2}+a \right )^{\frac {1}{4}} b^{2} x^{4}}d x \right ) b +\left (\int \frac {1}{\left (b \,x^{2}+a \right )^{\frac {1}{4}} a^{2}+2 \left (b \,x^{2}+a \right )^{\frac {1}{4}} a b \,x^{2}+\left (b \,x^{2}+a \right )^{\frac {1}{4}} b^{2} x^{4}}d x \right ) a \] Input:

int((D*x^6+C*x^4+B*x^2+A)/(b*x^2+a)^(9/4),x)
 

Output:

int(x**6/((a + b*x**2)**(1/4)*a**2 + 2*(a + b*x**2)**(1/4)*a*b*x**2 + (a + 
 b*x**2)**(1/4)*b**2*x**4),x)*d + int(x**4/((a + b*x**2)**(1/4)*a**2 + 2*( 
a + b*x**2)**(1/4)*a*b*x**2 + (a + b*x**2)**(1/4)*b**2*x**4),x)*c + int(x* 
*2/((a + b*x**2)**(1/4)*a**2 + 2*(a + b*x**2)**(1/4)*a*b*x**2 + (a + b*x** 
2)**(1/4)*b**2*x**4),x)*b + int(1/((a + b*x**2)**(1/4)*a**2 + 2*(a + b*x** 
2)**(1/4)*a*b*x**2 + (a + b*x**2)**(1/4)*b**2*x**4),x)*a