\(\int \frac {1}{a+b x^6} \, dx\) [14]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [B] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 9, antiderivative size = 150 \[ \int \frac {1}{a+b x^6} \, dx=\frac {\arctan \left (\frac {\sqrt [6]{b} x}{\sqrt [6]{a}}\right )}{3 a^{5/6} \sqrt [6]{b}}-\frac {\arctan \left (\sqrt {3}-\frac {2 \sqrt [6]{b} x}{\sqrt [6]{a}}\right )}{6 a^{5/6} \sqrt [6]{b}}+\frac {\arctan \left (\sqrt {3}+\frac {2 \sqrt [6]{b} x}{\sqrt [6]{a}}\right )}{6 a^{5/6} \sqrt [6]{b}}+\frac {\text {arctanh}\left (\frac {\sqrt {3} \sqrt [6]{a} \sqrt [6]{b} x}{\sqrt [3]{a}+\sqrt [3]{b} x^2}\right )}{2 \sqrt {3} a^{5/6} \sqrt [6]{b}} \] Output:

1/3*arctan(b^(1/6)*x/a^(1/6))/a^(5/6)/b^(1/6)+1/6*arctan(-3^(1/2)+2*b^(1/6 
)*x/a^(1/6))/a^(5/6)/b^(1/6)+1/6*arctan(3^(1/2)+2*b^(1/6)*x/a^(1/6))/a^(5/ 
6)/b^(1/6)+1/6*arctanh(3^(1/2)*a^(1/6)*b^(1/6)*x/(a^(1/3)+b^(1/3)*x^2))*3^ 
(1/2)/a^(5/6)/b^(1/6)
 

Mathematica [A] (verified)

Time = 0.04 (sec) , antiderivative size = 154, normalized size of antiderivative = 1.03 \[ \int \frac {1}{a+b x^6} \, dx=\frac {4 \arctan \left (\frac {\sqrt [6]{b} x}{\sqrt [6]{a}}\right )-2 \arctan \left (\sqrt {3}-\frac {2 \sqrt [6]{b} x}{\sqrt [6]{a}}\right )+2 \arctan \left (\sqrt {3}+\frac {2 \sqrt [6]{b} x}{\sqrt [6]{a}}\right )-\sqrt {3} \log \left (\sqrt [3]{a}-\sqrt {3} \sqrt [6]{a} \sqrt [6]{b} x+\sqrt [3]{b} x^2\right )+\sqrt {3} \log \left (\sqrt [3]{a}+\sqrt {3} \sqrt [6]{a} \sqrt [6]{b} x+\sqrt [3]{b} x^2\right )}{12 a^{5/6} \sqrt [6]{b}} \] Input:

Integrate[(a + b*x^6)^(-1),x]
 

Output:

(4*ArcTan[(b^(1/6)*x)/a^(1/6)] - 2*ArcTan[Sqrt[3] - (2*b^(1/6)*x)/a^(1/6)] 
 + 2*ArcTan[Sqrt[3] + (2*b^(1/6)*x)/a^(1/6)] - Sqrt[3]*Log[a^(1/3) - Sqrt[ 
3]*a^(1/6)*b^(1/6)*x + b^(1/3)*x^2] + Sqrt[3]*Log[a^(1/3) + Sqrt[3]*a^(1/6 
)*b^(1/6)*x + b^(1/3)*x^2])/(12*a^(5/6)*b^(1/6))
 

Rubi [A] (verified)

Time = 0.64 (sec) , antiderivative size = 210, normalized size of antiderivative = 1.40, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 1.000, Rules used = {753, 27, 218, 1142, 25, 27, 1082, 217, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{a+b x^6} \, dx\)

\(\Big \downarrow \) 753

\(\displaystyle \frac {\int \frac {1}{\sqrt [3]{b} x^2+\sqrt [3]{a}}dx}{3 a^{2/3}}+\frac {\int \frac {2 \sqrt [6]{a}-\sqrt {3} \sqrt [6]{b} x}{2 \left (\sqrt [3]{b} x^2-\sqrt {3} \sqrt [6]{a} \sqrt [6]{b} x+\sqrt [3]{a}\right )}dx}{3 a^{5/6}}+\frac {\int \frac {\sqrt {3} \sqrt [6]{b} x+2 \sqrt [6]{a}}{2 \left (\sqrt [3]{b} x^2+\sqrt {3} \sqrt [6]{a} \sqrt [6]{b} x+\sqrt [3]{a}\right )}dx}{3 a^{5/6}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {1}{\sqrt [3]{b} x^2+\sqrt [3]{a}}dx}{3 a^{2/3}}+\frac {\int \frac {2 \sqrt [6]{a}-\sqrt {3} \sqrt [6]{b} x}{\sqrt [3]{b} x^2-\sqrt {3} \sqrt [6]{a} \sqrt [6]{b} x+\sqrt [3]{a}}dx}{6 a^{5/6}}+\frac {\int \frac {\sqrt {3} \sqrt [6]{b} x+2 \sqrt [6]{a}}{\sqrt [3]{b} x^2+\sqrt {3} \sqrt [6]{a} \sqrt [6]{b} x+\sqrt [3]{a}}dx}{6 a^{5/6}}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {\int \frac {2 \sqrt [6]{a}-\sqrt {3} \sqrt [6]{b} x}{\sqrt [3]{b} x^2-\sqrt {3} \sqrt [6]{a} \sqrt [6]{b} x+\sqrt [3]{a}}dx}{6 a^{5/6}}+\frac {\int \frac {\sqrt {3} \sqrt [6]{b} x+2 \sqrt [6]{a}}{\sqrt [3]{b} x^2+\sqrt {3} \sqrt [6]{a} \sqrt [6]{b} x+\sqrt [3]{a}}dx}{6 a^{5/6}}+\frac {\arctan \left (\frac {\sqrt [6]{b} x}{\sqrt [6]{a}}\right )}{3 a^{5/6} \sqrt [6]{b}}\)

\(\Big \downarrow \) 1142

\(\displaystyle \frac {\frac {1}{2} \sqrt [6]{a} \int \frac {1}{\sqrt [3]{b} x^2-\sqrt {3} \sqrt [6]{a} \sqrt [6]{b} x+\sqrt [3]{a}}dx-\frac {\sqrt {3} \int -\frac {\sqrt [6]{b} \left (\sqrt {3} \sqrt [6]{a}-2 \sqrt [6]{b} x\right )}{\sqrt [3]{b} x^2-\sqrt {3} \sqrt [6]{a} \sqrt [6]{b} x+\sqrt [3]{a}}dx}{2 \sqrt [6]{b}}}{6 a^{5/6}}+\frac {\frac {1}{2} \sqrt [6]{a} \int \frac {1}{\sqrt [3]{b} x^2+\sqrt {3} \sqrt [6]{a} \sqrt [6]{b} x+\sqrt [3]{a}}dx+\frac {\sqrt {3} \int \frac {\sqrt [6]{b} \left (2 \sqrt [6]{b} x+\sqrt {3} \sqrt [6]{a}\right )}{\sqrt [3]{b} x^2+\sqrt {3} \sqrt [6]{a} \sqrt [6]{b} x+\sqrt [3]{a}}dx}{2 \sqrt [6]{b}}}{6 a^{5/6}}+\frac {\arctan \left (\frac {\sqrt [6]{b} x}{\sqrt [6]{a}}\right )}{3 a^{5/6} \sqrt [6]{b}}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\frac {1}{2} \sqrt [6]{a} \int \frac {1}{\sqrt [3]{b} x^2-\sqrt {3} \sqrt [6]{a} \sqrt [6]{b} x+\sqrt [3]{a}}dx+\frac {\sqrt {3} \int \frac {\sqrt [6]{b} \left (\sqrt {3} \sqrt [6]{a}-2 \sqrt [6]{b} x\right )}{\sqrt [3]{b} x^2-\sqrt {3} \sqrt [6]{a} \sqrt [6]{b} x+\sqrt [3]{a}}dx}{2 \sqrt [6]{b}}}{6 a^{5/6}}+\frac {\frac {1}{2} \sqrt [6]{a} \int \frac {1}{\sqrt [3]{b} x^2+\sqrt {3} \sqrt [6]{a} \sqrt [6]{b} x+\sqrt [3]{a}}dx+\frac {\sqrt {3} \int \frac {\sqrt [6]{b} \left (2 \sqrt [6]{b} x+\sqrt {3} \sqrt [6]{a}\right )}{\sqrt [3]{b} x^2+\sqrt {3} \sqrt [6]{a} \sqrt [6]{b} x+\sqrt [3]{a}}dx}{2 \sqrt [6]{b}}}{6 a^{5/6}}+\frac {\arctan \left (\frac {\sqrt [6]{b} x}{\sqrt [6]{a}}\right )}{3 a^{5/6} \sqrt [6]{b}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {1}{2} \sqrt [6]{a} \int \frac {1}{\sqrt [3]{b} x^2-\sqrt {3} \sqrt [6]{a} \sqrt [6]{b} x+\sqrt [3]{a}}dx+\frac {1}{2} \sqrt {3} \int \frac {\sqrt {3} \sqrt [6]{a}-2 \sqrt [6]{b} x}{\sqrt [3]{b} x^2-\sqrt {3} \sqrt [6]{a} \sqrt [6]{b} x+\sqrt [3]{a}}dx}{6 a^{5/6}}+\frac {\frac {1}{2} \sqrt [6]{a} \int \frac {1}{\sqrt [3]{b} x^2+\sqrt {3} \sqrt [6]{a} \sqrt [6]{b} x+\sqrt [3]{a}}dx+\frac {1}{2} \sqrt {3} \int \frac {2 \sqrt [6]{b} x+\sqrt {3} \sqrt [6]{a}}{\sqrt [3]{b} x^2+\sqrt {3} \sqrt [6]{a} \sqrt [6]{b} x+\sqrt [3]{a}}dx}{6 a^{5/6}}+\frac {\arctan \left (\frac {\sqrt [6]{b} x}{\sqrt [6]{a}}\right )}{3 a^{5/6} \sqrt [6]{b}}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {\frac {1}{2} \sqrt {3} \int \frac {\sqrt {3} \sqrt [6]{a}-2 \sqrt [6]{b} x}{\sqrt [3]{b} x^2-\sqrt {3} \sqrt [6]{a} \sqrt [6]{b} x+\sqrt [3]{a}}dx+\frac {\int \frac {1}{-\left (1-\frac {2 \sqrt [6]{b} x}{\sqrt {3} \sqrt [6]{a}}\right )^2-\frac {1}{3}}d\left (1-\frac {2 \sqrt [6]{b} x}{\sqrt {3} \sqrt [6]{a}}\right )}{\sqrt {3} \sqrt [6]{b}}}{6 a^{5/6}}+\frac {\frac {1}{2} \sqrt {3} \int \frac {2 \sqrt [6]{b} x+\sqrt {3} \sqrt [6]{a}}{\sqrt [3]{b} x^2+\sqrt {3} \sqrt [6]{a} \sqrt [6]{b} x+\sqrt [3]{a}}dx-\frac {\int \frac {1}{-\left (\frac {2 \sqrt [6]{b} x}{\sqrt {3} \sqrt [6]{a}}+1\right )^2-\frac {1}{3}}d\left (\frac {2 \sqrt [6]{b} x}{\sqrt {3} \sqrt [6]{a}}+1\right )}{\sqrt {3} \sqrt [6]{b}}}{6 a^{5/6}}+\frac {\arctan \left (\frac {\sqrt [6]{b} x}{\sqrt [6]{a}}\right )}{3 a^{5/6} \sqrt [6]{b}}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {\frac {1}{2} \sqrt {3} \int \frac {\sqrt {3} \sqrt [6]{a}-2 \sqrt [6]{b} x}{\sqrt [3]{b} x^2-\sqrt {3} \sqrt [6]{a} \sqrt [6]{b} x+\sqrt [3]{a}}dx-\frac {\arctan \left (\sqrt {3} \left (1-\frac {2 \sqrt [6]{b} x}{\sqrt {3} \sqrt [6]{a}}\right )\right )}{\sqrt [6]{b}}}{6 a^{5/6}}+\frac {\frac {1}{2} \sqrt {3} \int \frac {2 \sqrt [6]{b} x+\sqrt {3} \sqrt [6]{a}}{\sqrt [3]{b} x^2+\sqrt {3} \sqrt [6]{a} \sqrt [6]{b} x+\sqrt [3]{a}}dx+\frac {\arctan \left (\sqrt {3} \left (\frac {2 \sqrt [6]{b} x}{\sqrt {3} \sqrt [6]{a}}+1\right )\right )}{\sqrt [6]{b}}}{6 a^{5/6}}+\frac {\arctan \left (\frac {\sqrt [6]{b} x}{\sqrt [6]{a}}\right )}{3 a^{5/6} \sqrt [6]{b}}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {-\frac {\arctan \left (\sqrt {3} \left (1-\frac {2 \sqrt [6]{b} x}{\sqrt {3} \sqrt [6]{a}}\right )\right )}{\sqrt [6]{b}}-\frac {\sqrt {3} \log \left (-\sqrt {3} \sqrt [6]{a} \sqrt [6]{b} x+\sqrt [3]{a}+\sqrt [3]{b} x^2\right )}{2 \sqrt [6]{b}}}{6 a^{5/6}}+\frac {\frac {\arctan \left (\sqrt {3} \left (\frac {2 \sqrt [6]{b} x}{\sqrt {3} \sqrt [6]{a}}+1\right )\right )}{\sqrt [6]{b}}+\frac {\sqrt {3} \log \left (\sqrt {3} \sqrt [6]{a} \sqrt [6]{b} x+\sqrt [3]{a}+\sqrt [3]{b} x^2\right )}{2 \sqrt [6]{b}}}{6 a^{5/6}}+\frac {\arctan \left (\frac {\sqrt [6]{b} x}{\sqrt [6]{a}}\right )}{3 a^{5/6} \sqrt [6]{b}}\)

Input:

Int[(a + b*x^6)^(-1),x]
 

Output:

ArcTan[(b^(1/6)*x)/a^(1/6)]/(3*a^(5/6)*b^(1/6)) + (-(ArcTan[Sqrt[3]*(1 - ( 
2*b^(1/6)*x)/(Sqrt[3]*a^(1/6)))]/b^(1/6)) - (Sqrt[3]*Log[a^(1/3) - Sqrt[3] 
*a^(1/6)*b^(1/6)*x + b^(1/3)*x^2])/(2*b^(1/6)))/(6*a^(5/6)) + (ArcTan[Sqrt 
[3]*(1 + (2*b^(1/6)*x)/(Sqrt[3]*a^(1/6)))]/b^(1/6) + (Sqrt[3]*Log[a^(1/3) 
+ Sqrt[3]*a^(1/6)*b^(1/6)*x + b^(1/3)*x^2])/(2*b^(1/6)))/(6*a^(5/6))
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 753
Int[((a_) + (b_.)*(x_)^(n_))^(-1), x_Symbol] :> Module[{r = Numerator[Rt[a/ 
b, n]], s = Denominator[Rt[a/b, n]], k, u, v}, Simp[u = Int[(r - s*Cos[(2*k 
 - 1)*(Pi/n)]*x)/(r^2 - 2*r*s*Cos[(2*k - 1)*(Pi/n)]*x + s^2*x^2), x] + Int[ 
(r + s*Cos[(2*k - 1)*(Pi/n)]*x)/(r^2 + 2*r*s*Cos[(2*k - 1)*(Pi/n)]*x + s^2* 
x^2), x]; 2*(r^2/(a*n))   Int[1/(r^2 + s^2*x^2), x] + 2*(r/(a*n))   Sum[u, 
{k, 1, (n - 2)/4}], x]] /; FreeQ[{a, b}, x] && IGtQ[(n - 2)/4, 0] && PosQ[a 
/b]
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1142
Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[(2*c*d - b*e)/(2*c)   Int[1/(a + b*x + c*x^2), x], x] + Simp[e/(2*c) 
Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.43 (sec) , antiderivative size = 27, normalized size of antiderivative = 0.18

method result size
risch \(\frac {\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{6} b +a \right )}{\sum }\frac {\ln \left (x -\textit {\_R} \right )}{\textit {\_R}^{5}}}{6 b}\) \(27\)
default \(\frac {\sqrt {3}\, \left (\frac {a}{b}\right )^{\frac {1}{6}} \ln \left (x^{2}+\sqrt {3}\, \left (\frac {a}{b}\right )^{\frac {1}{6}} x +\left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}{12 a}+\frac {\left (\frac {a}{b}\right )^{\frac {1}{6}} \arctan \left (\frac {2 x}{\left (\frac {a}{b}\right )^{\frac {1}{6}}}+\sqrt {3}\right )}{6 a}-\frac {\sqrt {3}\, \left (\frac {a}{b}\right )^{\frac {1}{6}} \ln \left (x^{2}-\sqrt {3}\, \left (\frac {a}{b}\right )^{\frac {1}{6}} x +\left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}{12 a}+\frac {\left (\frac {a}{b}\right )^{\frac {1}{6}} \arctan \left (\frac {2 x}{\left (\frac {a}{b}\right )^{\frac {1}{6}}}-\sqrt {3}\right )}{6 a}+\frac {\left (\frac {a}{b}\right )^{\frac {1}{6}} \arctan \left (\frac {x}{\left (\frac {a}{b}\right )^{\frac {1}{6}}}\right )}{3 a}\) \(159\)

Input:

int(1/(b*x^6+a),x,method=_RETURNVERBOSE)
 

Output:

1/6/b*sum(1/_R^5*ln(x-_R),_R=RootOf(_Z^6*b+a))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 216 vs. \(2 (100) = 200\).

Time = 0.08 (sec) , antiderivative size = 216, normalized size of antiderivative = 1.44 \[ \int \frac {1}{a+b x^6} \, dx=\frac {1}{12} \, {\left (\sqrt {-3} + 1\right )} \left (-\frac {1}{a^{5} b}\right )^{\frac {1}{6}} \log \left (\frac {1}{2} \, {\left (\sqrt {-3} a + a\right )} \left (-\frac {1}{a^{5} b}\right )^{\frac {1}{6}} + x\right ) - \frac {1}{12} \, {\left (\sqrt {-3} + 1\right )} \left (-\frac {1}{a^{5} b}\right )^{\frac {1}{6}} \log \left (-\frac {1}{2} \, {\left (\sqrt {-3} a + a\right )} \left (-\frac {1}{a^{5} b}\right )^{\frac {1}{6}} + x\right ) + \frac {1}{12} \, {\left (\sqrt {-3} - 1\right )} \left (-\frac {1}{a^{5} b}\right )^{\frac {1}{6}} \log \left (\frac {1}{2} \, {\left (\sqrt {-3} a - a\right )} \left (-\frac {1}{a^{5} b}\right )^{\frac {1}{6}} + x\right ) - \frac {1}{12} \, {\left (\sqrt {-3} - 1\right )} \left (-\frac {1}{a^{5} b}\right )^{\frac {1}{6}} \log \left (-\frac {1}{2} \, {\left (\sqrt {-3} a - a\right )} \left (-\frac {1}{a^{5} b}\right )^{\frac {1}{6}} + x\right ) + \frac {1}{6} \, \left (-\frac {1}{a^{5} b}\right )^{\frac {1}{6}} \log \left (a \left (-\frac {1}{a^{5} b}\right )^{\frac {1}{6}} + x\right ) - \frac {1}{6} \, \left (-\frac {1}{a^{5} b}\right )^{\frac {1}{6}} \log \left (-a \left (-\frac {1}{a^{5} b}\right )^{\frac {1}{6}} + x\right ) \] Input:

integrate(1/(b*x^6+a),x, algorithm="fricas")
 

Output:

1/12*(sqrt(-3) + 1)*(-1/(a^5*b))^(1/6)*log(1/2*(sqrt(-3)*a + a)*(-1/(a^5*b 
))^(1/6) + x) - 1/12*(sqrt(-3) + 1)*(-1/(a^5*b))^(1/6)*log(-1/2*(sqrt(-3)* 
a + a)*(-1/(a^5*b))^(1/6) + x) + 1/12*(sqrt(-3) - 1)*(-1/(a^5*b))^(1/6)*lo 
g(1/2*(sqrt(-3)*a - a)*(-1/(a^5*b))^(1/6) + x) - 1/12*(sqrt(-3) - 1)*(-1/( 
a^5*b))^(1/6)*log(-1/2*(sqrt(-3)*a - a)*(-1/(a^5*b))^(1/6) + x) + 1/6*(-1/ 
(a^5*b))^(1/6)*log(a*(-1/(a^5*b))^(1/6) + x) - 1/6*(-1/(a^5*b))^(1/6)*log( 
-a*(-1/(a^5*b))^(1/6) + x)
 

Sympy [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 20, normalized size of antiderivative = 0.13 \[ \int \frac {1}{a+b x^6} \, dx=\operatorname {RootSum} {\left (46656 t^{6} a^{5} b + 1, \left ( t \mapsto t \log {\left (6 t a + x \right )} \right )\right )} \] Input:

integrate(1/(b*x**6+a),x)
 

Output:

RootSum(46656*_t**6*a**5*b + 1, Lambda(_t, _t*log(6*_t*a + x)))
 

Maxima [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 184, normalized size of antiderivative = 1.23 \[ \int \frac {1}{a+b x^6} \, dx=\frac {\sqrt {3} \log \left (b^{\frac {1}{3}} x^{2} + \sqrt {3} a^{\frac {1}{6}} b^{\frac {1}{6}} x + a^{\frac {1}{3}}\right )}{12 \, a^{\frac {5}{6}} b^{\frac {1}{6}}} - \frac {\sqrt {3} \log \left (b^{\frac {1}{3}} x^{2} - \sqrt {3} a^{\frac {1}{6}} b^{\frac {1}{6}} x + a^{\frac {1}{3}}\right )}{12 \, a^{\frac {5}{6}} b^{\frac {1}{6}}} + \frac {\arctan \left (\frac {b^{\frac {1}{3}} x}{\sqrt {a^{\frac {1}{3}} b^{\frac {1}{3}}}}\right )}{3 \, a^{\frac {2}{3}} \sqrt {a^{\frac {1}{3}} b^{\frac {1}{3}}}} + \frac {\arctan \left (\frac {2 \, b^{\frac {1}{3}} x + \sqrt {3} a^{\frac {1}{6}} b^{\frac {1}{6}}}{\sqrt {a^{\frac {1}{3}} b^{\frac {1}{3}}}}\right )}{6 \, a^{\frac {2}{3}} \sqrt {a^{\frac {1}{3}} b^{\frac {1}{3}}}} + \frac {\arctan \left (\frac {2 \, b^{\frac {1}{3}} x - \sqrt {3} a^{\frac {1}{6}} b^{\frac {1}{6}}}{\sqrt {a^{\frac {1}{3}} b^{\frac {1}{3}}}}\right )}{6 \, a^{\frac {2}{3}} \sqrt {a^{\frac {1}{3}} b^{\frac {1}{3}}}} \] Input:

integrate(1/(b*x^6+a),x, algorithm="maxima")
 

Output:

1/12*sqrt(3)*log(b^(1/3)*x^2 + sqrt(3)*a^(1/6)*b^(1/6)*x + a^(1/3))/(a^(5/ 
6)*b^(1/6)) - 1/12*sqrt(3)*log(b^(1/3)*x^2 - sqrt(3)*a^(1/6)*b^(1/6)*x + a 
^(1/3))/(a^(5/6)*b^(1/6)) + 1/3*arctan(b^(1/3)*x/sqrt(a^(1/3)*b^(1/3)))/(a 
^(2/3)*sqrt(a^(1/3)*b^(1/3))) + 1/6*arctan((2*b^(1/3)*x + sqrt(3)*a^(1/6)* 
b^(1/6))/sqrt(a^(1/3)*b^(1/3)))/(a^(2/3)*sqrt(a^(1/3)*b^(1/3))) + 1/6*arct 
an((2*b^(1/3)*x - sqrt(3)*a^(1/6)*b^(1/6))/sqrt(a^(1/3)*b^(1/3)))/(a^(2/3) 
*sqrt(a^(1/3)*b^(1/3)))
 

Giac [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 190, normalized size of antiderivative = 1.27 \[ \int \frac {1}{a+b x^6} \, dx=\frac {\sqrt {3} \left (a b^{5}\right )^{\frac {1}{6}} \log \left (x^{2} + \sqrt {3} x \left (\frac {a}{b}\right )^{\frac {1}{6}} + \left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}{12 \, a b} - \frac {\sqrt {3} \left (a b^{5}\right )^{\frac {1}{6}} \log \left (x^{2} - \sqrt {3} x \left (\frac {a}{b}\right )^{\frac {1}{6}} + \left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}{12 \, a b} + \frac {\left (a b^{5}\right )^{\frac {1}{6}} \arctan \left (\frac {2 \, x + \sqrt {3} \left (\frac {a}{b}\right )^{\frac {1}{6}}}{\left (\frac {a}{b}\right )^{\frac {1}{6}}}\right )}{6 \, a b} + \frac {\left (a b^{5}\right )^{\frac {1}{6}} \arctan \left (\frac {2 \, x - \sqrt {3} \left (\frac {a}{b}\right )^{\frac {1}{6}}}{\left (\frac {a}{b}\right )^{\frac {1}{6}}}\right )}{6 \, a b} + \frac {\left (a b^{5}\right )^{\frac {1}{6}} \arctan \left (\frac {x}{\left (\frac {a}{b}\right )^{\frac {1}{6}}}\right )}{3 \, a b} \] Input:

integrate(1/(b*x^6+a),x, algorithm="giac")
 

Output:

1/12*sqrt(3)*(a*b^5)^(1/6)*log(x^2 + sqrt(3)*x*(a/b)^(1/6) + (a/b)^(1/3))/ 
(a*b) - 1/12*sqrt(3)*(a*b^5)^(1/6)*log(x^2 - sqrt(3)*x*(a/b)^(1/6) + (a/b) 
^(1/3))/(a*b) + 1/6*(a*b^5)^(1/6)*arctan((2*x + sqrt(3)*(a/b)^(1/6))/(a/b) 
^(1/6))/(a*b) + 1/6*(a*b^5)^(1/6)*arctan((2*x - sqrt(3)*(a/b)^(1/6))/(a/b) 
^(1/6))/(a*b) + 1/3*(a*b^5)^(1/6)*arctan(x/(a/b)^(1/6))/(a*b)
 

Mupad [B] (verification not implemented)

Time = 0.21 (sec) , antiderivative size = 219, normalized size of antiderivative = 1.46 \[ \int \frac {1}{a+b x^6} \, dx=-\frac {\mathrm {atanh}\left (\frac {b^{1/6}\,x}{{\left (-a\right )}^{1/6}}\right )}{3\,{\left (-a\right )}^{5/6}\,b^{1/6}}+\frac {\mathrm {atan}\left (\frac {b^{29/6}\,x\,1{}\mathrm {i}}{{\left (-a\right )}^{5/6}\,\left (\frac {b^{14/3}}{{\left (-a\right )}^{2/3}}+\frac {\sqrt {3}\,b^{14/3}\,1{}\mathrm {i}}{{\left (-a\right )}^{2/3}}\right )}+\frac {\sqrt {3}\,b^{29/6}\,x}{{\left (-a\right )}^{5/6}\,\left (\frac {b^{14/3}}{{\left (-a\right )}^{2/3}}+\frac {\sqrt {3}\,b^{14/3}\,1{}\mathrm {i}}{{\left (-a\right )}^{2/3}}\right )}\right )\,\left (-1+\sqrt {3}\,1{}\mathrm {i}\right )\,1{}\mathrm {i}}{6\,{\left (-a\right )}^{5/6}\,b^{1/6}}-\frac {\mathrm {atan}\left (\frac {b^{29/6}\,x\,1{}\mathrm {i}}{{\left (-a\right )}^{5/6}\,\left (\frac {b^{14/3}}{{\left (-a\right )}^{2/3}}-\frac {\sqrt {3}\,b^{14/3}\,1{}\mathrm {i}}{{\left (-a\right )}^{2/3}}\right )}-\frac {\sqrt {3}\,b^{29/6}\,x}{{\left (-a\right )}^{5/6}\,\left (\frac {b^{14/3}}{{\left (-a\right )}^{2/3}}-\frac {\sqrt {3}\,b^{14/3}\,1{}\mathrm {i}}{{\left (-a\right )}^{2/3}}\right )}\right )\,\left (1+\sqrt {3}\,1{}\mathrm {i}\right )\,1{}\mathrm {i}}{6\,{\left (-a\right )}^{5/6}\,b^{1/6}} \] Input:

int(1/(a + b*x^6),x)
 

Output:

(atan((b^(29/6)*x*1i)/((-a)^(5/6)*(b^(14/3)/(-a)^(2/3) + (3^(1/2)*b^(14/3) 
*1i)/(-a)^(2/3))) + (3^(1/2)*b^(29/6)*x)/((-a)^(5/6)*(b^(14/3)/(-a)^(2/3) 
+ (3^(1/2)*b^(14/3)*1i)/(-a)^(2/3))))*(3^(1/2)*1i - 1)*1i)/(6*(-a)^(5/6)*b 
^(1/6)) - atanh((b^(1/6)*x)/(-a)^(1/6))/(3*(-a)^(5/6)*b^(1/6)) - (atan((b^ 
(29/6)*x*1i)/((-a)^(5/6)*(b^(14/3)/(-a)^(2/3) - (3^(1/2)*b^(14/3)*1i)/(-a) 
^(2/3))) - (3^(1/2)*b^(29/6)*x)/((-a)^(5/6)*(b^(14/3)/(-a)^(2/3) - (3^(1/2 
)*b^(14/3)*1i)/(-a)^(2/3))))*(3^(1/2)*1i + 1)*1i)/(6*(-a)^(5/6)*b^(1/6))
 

Reduce [B] (verification not implemented)

Time = 0.22 (sec) , antiderivative size = 124, normalized size of antiderivative = 0.83 \[ \int \frac {1}{a+b x^6} \, dx=\frac {-2 \mathit {atan} \left (\frac {b^{\frac {1}{6}} a^{\frac {1}{6}} \sqrt {3}-2 b^{\frac {1}{3}} x}{b^{\frac {1}{6}} a^{\frac {1}{6}}}\right )+2 \mathit {atan} \left (\frac {b^{\frac {1}{6}} a^{\frac {1}{6}} \sqrt {3}+2 b^{\frac {1}{3}} x}{b^{\frac {1}{6}} a^{\frac {1}{6}}}\right )+4 \mathit {atan} \left (\frac {b^{\frac {1}{6}} x}{a^{\frac {1}{6}}}\right )-\sqrt {3}\, \mathrm {log}\left (-b^{\frac {1}{6}} a^{\frac {1}{6}} \sqrt {3}\, x +a^{\frac {1}{3}}+b^{\frac {1}{3}} x^{2}\right )+\sqrt {3}\, \mathrm {log}\left (b^{\frac {1}{6}} a^{\frac {1}{6}} \sqrt {3}\, x +a^{\frac {1}{3}}+b^{\frac {1}{3}} x^{2}\right )}{12 b^{\frac {1}{6}} a^{\frac {5}{6}}} \] Input:

int(1/(b*x^6+a),x)
 

Output:

(b**(1/6)*a**(1/6)*( - 2*atan((b**(1/6)*a**(1/6)*sqrt(3) - 2*b**(1/3)*x)/( 
b**(1/6)*a**(1/6))) + 2*atan((b**(1/6)*a**(1/6)*sqrt(3) + 2*b**(1/3)*x)/(b 
**(1/6)*a**(1/6))) + 4*atan((b**(1/3)*x)/(b**(1/6)*a**(1/6))) - sqrt(3)*lo 
g( - b**(1/6)*a**(1/6)*sqrt(3)*x + a**(1/3) + b**(1/3)*x**2) + sqrt(3)*log 
(b**(1/6)*a**(1/6)*sqrt(3)*x + a**(1/3) + b**(1/3)*x**2)))/(12*b**(1/3)*a)