\(\int \frac {1}{x^2 (a+b x^3)} \, dx\) [123]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [A] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 13, antiderivative size = 122 \[ \int \frac {1}{x^2 \left (a+b x^3\right )} \, dx=-\frac {1}{a x}+\frac {\sqrt [3]{b} \arctan \left (\frac {\sqrt [3]{a}-2 \sqrt [3]{b} x}{\sqrt {3} \sqrt [3]{a}}\right )}{\sqrt {3} a^{4/3}}+\frac {\sqrt [3]{b} \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{4/3}}-\frac {\sqrt [3]{b} \log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{6 a^{4/3}} \] Output:

-1/a/x+1/3*b^(1/3)*arctan(1/3*(a^(1/3)-2*b^(1/3)*x)*3^(1/2)/a^(1/3))*3^(1/ 
2)/a^(4/3)+1/3*b^(1/3)*ln(a^(1/3)+b^(1/3)*x)/a^(4/3)-1/6*b^(1/3)*ln(a^(2/3 
)-a^(1/3)*b^(1/3)*x+b^(2/3)*x^2)/a^(4/3)
 

Mathematica [A] (verified)

Time = 0.01 (sec) , antiderivative size = 114, normalized size of antiderivative = 0.93 \[ \int \frac {1}{x^2 \left (a+b x^3\right )} \, dx=\frac {-6 \sqrt [3]{a}+2 \sqrt {3} \sqrt [3]{b} x \arctan \left (\frac {1-\frac {2 \sqrt [3]{b} x}{\sqrt [3]{a}}}{\sqrt {3}}\right )+2 \sqrt [3]{b} x \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )-\sqrt [3]{b} x \log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{6 a^{4/3} x} \] Input:

Integrate[1/(x^2*(a + b*x^3)),x]
 

Output:

(-6*a^(1/3) + 2*Sqrt[3]*b^(1/3)*x*ArcTan[(1 - (2*b^(1/3)*x)/a^(1/3))/Sqrt[ 
3]] + 2*b^(1/3)*x*Log[a^(1/3) + b^(1/3)*x] - b^(1/3)*x*Log[a^(2/3) - a^(1/ 
3)*b^(1/3)*x + b^(2/3)*x^2])/(6*a^(4/3)*x)
 

Rubi [A] (verified)

Time = 0.44 (sec) , antiderivative size = 131, normalized size of antiderivative = 1.07, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.692, Rules used = {847, 821, 16, 1142, 25, 27, 1082, 217, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{x^2 \left (a+b x^3\right )} \, dx\)

\(\Big \downarrow \) 847

\(\displaystyle -\frac {b \int \frac {x}{b x^3+a}dx}{a}-\frac {1}{a x}\)

\(\Big \downarrow \) 821

\(\displaystyle -\frac {b \left (\frac {\int \frac {\sqrt [3]{b} x+\sqrt [3]{a}}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx}{3 \sqrt [3]{a} \sqrt [3]{b}}-\frac {\int \frac {1}{\sqrt [3]{b} x+\sqrt [3]{a}}dx}{3 \sqrt [3]{a} \sqrt [3]{b}}\right )}{a}-\frac {1}{a x}\)

\(\Big \downarrow \) 16

\(\displaystyle -\frac {b \left (\frac {\int \frac {\sqrt [3]{b} x+\sqrt [3]{a}}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx}{3 \sqrt [3]{a} \sqrt [3]{b}}-\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 \sqrt [3]{a} b^{2/3}}\right )}{a}-\frac {1}{a x}\)

\(\Big \downarrow \) 1142

\(\displaystyle -\frac {b \left (\frac {\frac {3}{2} \sqrt [3]{a} \int \frac {1}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx+\frac {\int -\frac {\sqrt [3]{b} \left (\sqrt [3]{a}-2 \sqrt [3]{b} x\right )}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx}{2 \sqrt [3]{b}}}{3 \sqrt [3]{a} \sqrt [3]{b}}-\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 \sqrt [3]{a} b^{2/3}}\right )}{a}-\frac {1}{a x}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {b \left (\frac {\frac {3}{2} \sqrt [3]{a} \int \frac {1}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx-\frac {\int \frac {\sqrt [3]{b} \left (\sqrt [3]{a}-2 \sqrt [3]{b} x\right )}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx}{2 \sqrt [3]{b}}}{3 \sqrt [3]{a} \sqrt [3]{b}}-\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 \sqrt [3]{a} b^{2/3}}\right )}{a}-\frac {1}{a x}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {b \left (\frac {\frac {3}{2} \sqrt [3]{a} \int \frac {1}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx-\frac {1}{2} \int \frac {\sqrt [3]{a}-2 \sqrt [3]{b} x}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx}{3 \sqrt [3]{a} \sqrt [3]{b}}-\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 \sqrt [3]{a} b^{2/3}}\right )}{a}-\frac {1}{a x}\)

\(\Big \downarrow \) 1082

\(\displaystyle -\frac {b \left (\frac {\frac {3 \int \frac {1}{-\left (1-\frac {2 \sqrt [3]{b} x}{\sqrt [3]{a}}\right )^2-3}d\left (1-\frac {2 \sqrt [3]{b} x}{\sqrt [3]{a}}\right )}{\sqrt [3]{b}}-\frac {1}{2} \int \frac {\sqrt [3]{a}-2 \sqrt [3]{b} x}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx}{3 \sqrt [3]{a} \sqrt [3]{b}}-\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 \sqrt [3]{a} b^{2/3}}\right )}{a}-\frac {1}{a x}\)

\(\Big \downarrow \) 217

\(\displaystyle -\frac {b \left (\frac {-\frac {1}{2} \int \frac {\sqrt [3]{a}-2 \sqrt [3]{b} x}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx-\frac {\sqrt {3} \arctan \left (\frac {1-\frac {2 \sqrt [3]{b} x}{\sqrt [3]{a}}}{\sqrt {3}}\right )}{\sqrt [3]{b}}}{3 \sqrt [3]{a} \sqrt [3]{b}}-\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 \sqrt [3]{a} b^{2/3}}\right )}{a}-\frac {1}{a x}\)

\(\Big \downarrow \) 1103

\(\displaystyle -\frac {b \left (\frac {\frac {\log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{2 \sqrt [3]{b}}-\frac {\sqrt {3} \arctan \left (\frac {1-\frac {2 \sqrt [3]{b} x}{\sqrt [3]{a}}}{\sqrt {3}}\right )}{\sqrt [3]{b}}}{3 \sqrt [3]{a} \sqrt [3]{b}}-\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 \sqrt [3]{a} b^{2/3}}\right )}{a}-\frac {1}{a x}\)

Input:

Int[1/(x^2*(a + b*x^3)),x]
 

Output:

-(1/(a*x)) - (b*(-1/3*Log[a^(1/3) + b^(1/3)*x]/(a^(1/3)*b^(2/3)) + (-((Sqr 
t[3]*ArcTan[(1 - (2*b^(1/3)*x)/a^(1/3))/Sqrt[3]])/b^(1/3)) + Log[a^(2/3) - 
 a^(1/3)*b^(1/3)*x + b^(2/3)*x^2]/(2*b^(1/3)))/(3*a^(1/3)*b^(1/3))))/a
 

Defintions of rubi rules used

rule 16
Int[(c_.)/((a_.) + (b_.)*(x_)), x_Symbol] :> Simp[c*(Log[RemoveContent[a + 
b*x, x]]/b), x] /; FreeQ[{a, b, c}, x]
 

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 821
Int[(x_)/((a_) + (b_.)*(x_)^3), x_Symbol] :> Simp[-(3*Rt[a, 3]*Rt[b, 3])^(- 
1)   Int[1/(Rt[a, 3] + Rt[b, 3]*x), x], x] + Simp[1/(3*Rt[a, 3]*Rt[b, 3]) 
 Int[(Rt[a, 3] + Rt[b, 3]*x)/(Rt[a, 3]^2 - Rt[a, 3]*Rt[b, 3]*x + Rt[b, 3]^2 
*x^2), x], x] /; FreeQ[{a, b}, x]
 

rule 847
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c*x 
)^(m + 1)*((a + b*x^n)^(p + 1)/(a*c*(m + 1))), x] - Simp[b*((m + n*(p + 1) 
+ 1)/(a*c^n*(m + 1)))   Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; FreeQ[{a 
, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p 
, x]
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1142
Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[(2*c*d - b*e)/(2*c)   Int[1/(a + b*x + c*x^2), x], x] + Simp[e/(2*c) 
Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.44 (sec) , antiderivative size = 53, normalized size of antiderivative = 0.43

method result size
risch \(-\frac {1}{a x}+\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (a^{4} \textit {\_Z}^{3}-b \right )}{\sum }\textit {\_R} \ln \left (\left (-4 \textit {\_R}^{3} a^{4}+3 b \right ) x -a^{3} \textit {\_R}^{2}\right )\right )}{3}\) \(53\)
default \(-\frac {1}{a x}-\frac {\left (-\frac {\ln \left (x +\left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}{3 b \left (\frac {a}{b}\right )^{\frac {1}{3}}}+\frac {\ln \left (x^{2}-\left (\frac {a}{b}\right )^{\frac {1}{3}} x +\left (\frac {a}{b}\right )^{\frac {2}{3}}\right )}{6 b \left (\frac {a}{b}\right )^{\frac {1}{3}}}+\frac {\sqrt {3}\, \arctan \left (\frac {\sqrt {3}\, \left (\frac {2 x}{\left (\frac {a}{b}\right )^{\frac {1}{3}}}-1\right )}{3}\right )}{3 b \left (\frac {a}{b}\right )^{\frac {1}{3}}}\right ) b}{a}\) \(106\)

Input:

int(1/x^2/(b*x^3+a),x,method=_RETURNVERBOSE)
 

Output:

-1/a/x+1/3*sum(_R*ln((-4*_R^3*a^4+3*b)*x-a^3*_R^2),_R=RootOf(_Z^3*a^4-b))
 

Fricas [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 103, normalized size of antiderivative = 0.84 \[ \int \frac {1}{x^2 \left (a+b x^3\right )} \, dx=-\frac {2 \, \sqrt {3} x \left (\frac {b}{a}\right )^{\frac {1}{3}} \arctan \left (\frac {2}{3} \, \sqrt {3} x \left (\frac {b}{a}\right )^{\frac {1}{3}} - \frac {1}{3} \, \sqrt {3}\right ) + x \left (\frac {b}{a}\right )^{\frac {1}{3}} \log \left (b x^{2} - a x \left (\frac {b}{a}\right )^{\frac {2}{3}} + a \left (\frac {b}{a}\right )^{\frac {1}{3}}\right ) - 2 \, x \left (\frac {b}{a}\right )^{\frac {1}{3}} \log \left (b x + a \left (\frac {b}{a}\right )^{\frac {2}{3}}\right ) + 6}{6 \, a x} \] Input:

integrate(1/x^2/(b*x^3+a),x, algorithm="fricas")
 

Output:

-1/6*(2*sqrt(3)*x*(b/a)^(1/3)*arctan(2/3*sqrt(3)*x*(b/a)^(1/3) - 1/3*sqrt( 
3)) + x*(b/a)^(1/3)*log(b*x^2 - a*x*(b/a)^(2/3) + a*(b/a)^(1/3)) - 2*x*(b/ 
a)^(1/3)*log(b*x + a*(b/a)^(2/3)) + 6)/(a*x)
 

Sympy [A] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 29, normalized size of antiderivative = 0.24 \[ \int \frac {1}{x^2 \left (a+b x^3\right )} \, dx=\operatorname {RootSum} {\left (27 t^{3} a^{4} - b, \left ( t \mapsto t \log {\left (\frac {9 t^{2} a^{3}}{b} + x \right )} \right )\right )} - \frac {1}{a x} \] Input:

integrate(1/x**2/(b*x**3+a),x)
 

Output:

RootSum(27*_t**3*a**4 - b, Lambda(_t, _t*log(9*_t**2*a**3/b + x))) - 1/(a* 
x)
                                                                                    
                                                                                    
 

Maxima [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 106, normalized size of antiderivative = 0.87 \[ \int \frac {1}{x^2 \left (a+b x^3\right )} \, dx=-\frac {\sqrt {3} \arctan \left (\frac {\sqrt {3} {\left (2 \, x - \left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}}{3 \, \left (\frac {a}{b}\right )^{\frac {1}{3}}}\right )}{3 \, a \left (\frac {a}{b}\right )^{\frac {1}{3}}} - \frac {\log \left (x^{2} - x \left (\frac {a}{b}\right )^{\frac {1}{3}} + \left (\frac {a}{b}\right )^{\frac {2}{3}}\right )}{6 \, a \left (\frac {a}{b}\right )^{\frac {1}{3}}} + \frac {\log \left (x + \left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}{3 \, a \left (\frac {a}{b}\right )^{\frac {1}{3}}} - \frac {1}{a x} \] Input:

integrate(1/x^2/(b*x^3+a),x, algorithm="maxima")
 

Output:

-1/3*sqrt(3)*arctan(1/3*sqrt(3)*(2*x - (a/b)^(1/3))/(a/b)^(1/3))/(a*(a/b)^ 
(1/3)) - 1/6*log(x^2 - x*(a/b)^(1/3) + (a/b)^(2/3))/(a*(a/b)^(1/3)) + 1/3* 
log(x + (a/b)^(1/3))/(a*(a/b)^(1/3)) - 1/(a*x)
 

Giac [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 121, normalized size of antiderivative = 0.99 \[ \int \frac {1}{x^2 \left (a+b x^3\right )} \, dx=\frac {b \left (-\frac {a}{b}\right )^{\frac {2}{3}} \log \left ({\left | x - \left (-\frac {a}{b}\right )^{\frac {1}{3}} \right |}\right )}{3 \, a^{2}} + \frac {\sqrt {3} \left (-a b^{2}\right )^{\frac {2}{3}} \arctan \left (\frac {\sqrt {3} {\left (2 \, x + \left (-\frac {a}{b}\right )^{\frac {1}{3}}\right )}}{3 \, \left (-\frac {a}{b}\right )^{\frac {1}{3}}}\right )}{3 \, a^{2} b} - \frac {\left (-a b^{2}\right )^{\frac {2}{3}} \log \left (x^{2} + x \left (-\frac {a}{b}\right )^{\frac {1}{3}} + \left (-\frac {a}{b}\right )^{\frac {2}{3}}\right )}{6 \, a^{2} b} - \frac {1}{a x} \] Input:

integrate(1/x^2/(b*x^3+a),x, algorithm="giac")
 

Output:

1/3*b*(-a/b)^(2/3)*log(abs(x - (-a/b)^(1/3)))/a^2 + 1/3*sqrt(3)*(-a*b^2)^( 
2/3)*arctan(1/3*sqrt(3)*(2*x + (-a/b)^(1/3))/(-a/b)^(1/3))/(a^2*b) - 1/6*( 
-a*b^2)^(2/3)*log(x^2 + x*(-a/b)^(1/3) + (-a/b)^(2/3))/(a^2*b) - 1/(a*x)
 

Mupad [B] (verification not implemented)

Time = 0.34 (sec) , antiderivative size = 102, normalized size of antiderivative = 0.84 \[ \int \frac {1}{x^2 \left (a+b x^3\right )} \, dx=\frac {b^{1/3}\,\ln \left (b^{1/3}\,x+a^{1/3}\right )}{3\,a^{4/3}}-\frac {1}{a\,x}-\frac {b^{1/3}\,\ln \left (4\,b^{1/3}\,x-2\,a^{1/3}+\sqrt {3}\,a^{1/3}\,2{}\mathrm {i}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}{3\,a^{4/3}}+\frac {b^{1/3}\,\ln \left (4\,b^{1/3}\,x-2\,a^{1/3}-\sqrt {3}\,a^{1/3}\,2{}\mathrm {i}\right )\,\left (-\frac {1}{6}+\frac {\sqrt {3}\,1{}\mathrm {i}}{6}\right )}{a^{4/3}} \] Input:

int(1/(x^2*(a + b*x^3)),x)
 

Output:

(b^(1/3)*log(b^(1/3)*x + a^(1/3)))/(3*a^(4/3)) - 1/(a*x) - (b^(1/3)*log(3^ 
(1/2)*a^(1/3)*2i + 4*b^(1/3)*x - 2*a^(1/3))*((3^(1/2)*1i)/2 + 1/2))/(3*a^( 
4/3)) + (b^(1/3)*log(4*b^(1/3)*x - 3^(1/2)*a^(1/3)*2i - 2*a^(1/3))*((3^(1/ 
2)*1i)/6 - 1/6))/a^(4/3)
 

Reduce [B] (verification not implemented)

Time = 0.22 (sec) , antiderivative size = 84, normalized size of antiderivative = 0.69 \[ \int \frac {1}{x^2 \left (a+b x^3\right )} \, dx=\frac {2 \sqrt {3}\, \mathit {atan} \left (\frac {a^{\frac {1}{3}}-2 b^{\frac {1}{3}} x}{a^{\frac {1}{3}} \sqrt {3}}\right ) b x -6 b^{\frac {2}{3}} a^{\frac {1}{3}}-\mathrm {log}\left (a^{\frac {2}{3}}-b^{\frac {1}{3}} a^{\frac {1}{3}} x +b^{\frac {2}{3}} x^{2}\right ) b x +2 \,\mathrm {log}\left (a^{\frac {1}{3}}+b^{\frac {1}{3}} x \right ) b x}{6 b^{\frac {2}{3}} a^{\frac {4}{3}} x} \] Input:

int(1/x^2/(b*x^3+a),x)
 

Output:

(2*sqrt(3)*atan((a**(1/3) - 2*b**(1/3)*x)/(a**(1/3)*sqrt(3)))*b*x - 6*b**( 
2/3)*a**(1/3) - log(a**(2/3) - b**(1/3)*a**(1/3)*x + b**(2/3)*x**2)*b*x + 
2*log(a**(1/3) + b**(1/3)*x)*b*x)/(6*b**(2/3)*a**(1/3)*a*x)