\(\int \frac {x^3}{(a+b x^3)^3} \, dx\) [146]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [B] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 13, antiderivative size = 154 \[ \int \frac {x^3}{\left (a+b x^3\right )^3} \, dx=-\frac {x}{6 b \left (a+b x^3\right )^2}+\frac {x}{18 a b \left (a+b x^3\right )}-\frac {\arctan \left (\frac {\sqrt [3]{a}-2 \sqrt [3]{b} x}{\sqrt {3} \sqrt [3]{a}}\right )}{9 \sqrt {3} a^{5/3} b^{4/3}}+\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{27 a^{5/3} b^{4/3}}-\frac {\log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{54 a^{5/3} b^{4/3}} \] Output:

-1/6*x/b/(b*x^3+a)^2+1/18*x/a/b/(b*x^3+a)-1/27*arctan(1/3*(a^(1/3)-2*b^(1/ 
3)*x)*3^(1/2)/a^(1/3))*3^(1/2)/a^(5/3)/b^(4/3)+1/27*ln(a^(1/3)+b^(1/3)*x)/ 
a^(5/3)/b^(4/3)-1/54*ln(a^(2/3)-a^(1/3)*b^(1/3)*x+b^(2/3)*x^2)/a^(5/3)/b^( 
4/3)
 

Mathematica [A] (verified)

Time = 0.05 (sec) , antiderivative size = 138, normalized size of antiderivative = 0.90 \[ \int \frac {x^3}{\left (a+b x^3\right )^3} \, dx=\frac {-\frac {9 \sqrt [3]{b} x}{\left (a+b x^3\right )^2}+\frac {3 \sqrt [3]{b} x}{a^2+a b x^3}-\frac {2 \sqrt {3} \arctan \left (\frac {1-\frac {2 \sqrt [3]{b} x}{\sqrt [3]{a}}}{\sqrt {3}}\right )}{a^{5/3}}+\frac {2 \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{a^{5/3}}-\frac {\log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{a^{5/3}}}{54 b^{4/3}} \] Input:

Integrate[x^3/(a + b*x^3)^3,x]
 

Output:

((-9*b^(1/3)*x)/(a + b*x^3)^2 + (3*b^(1/3)*x)/(a^2 + a*b*x^3) - (2*Sqrt[3] 
*ArcTan[(1 - (2*b^(1/3)*x)/a^(1/3))/Sqrt[3]])/a^(5/3) + (2*Log[a^(1/3) + b 
^(1/3)*x])/a^(5/3) - Log[a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3)*x^2]/a^(5/3 
))/(54*b^(4/3))
 

Rubi [A] (verified)

Time = 0.48 (sec) , antiderivative size = 161, normalized size of antiderivative = 1.05, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.769, Rules used = {817, 749, 750, 16, 1142, 25, 27, 1082, 217, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^3}{\left (a+b x^3\right )^3} \, dx\)

\(\Big \downarrow \) 817

\(\displaystyle \frac {\int \frac {1}{\left (b x^3+a\right )^2}dx}{6 b}-\frac {x}{6 b \left (a+b x^3\right )^2}\)

\(\Big \downarrow \) 749

\(\displaystyle \frac {\frac {2 \int \frac {1}{b x^3+a}dx}{3 a}+\frac {x}{3 a \left (a+b x^3\right )}}{6 b}-\frac {x}{6 b \left (a+b x^3\right )^2}\)

\(\Big \downarrow \) 750

\(\displaystyle \frac {\frac {2 \left (\frac {\int \frac {2 \sqrt [3]{a}-\sqrt [3]{b} x}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx}{3 a^{2/3}}+\frac {\int \frac {1}{\sqrt [3]{b} x+\sqrt [3]{a}}dx}{3 a^{2/3}}\right )}{3 a}+\frac {x}{3 a \left (a+b x^3\right )}}{6 b}-\frac {x}{6 b \left (a+b x^3\right )^2}\)

\(\Big \downarrow \) 16

\(\displaystyle \frac {\frac {2 \left (\frac {\int \frac {2 \sqrt [3]{a}-\sqrt [3]{b} x}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx}{3 a^{2/3}}+\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{2/3} \sqrt [3]{b}}\right )}{3 a}+\frac {x}{3 a \left (a+b x^3\right )}}{6 b}-\frac {x}{6 b \left (a+b x^3\right )^2}\)

\(\Big \downarrow \) 1142

\(\displaystyle \frac {\frac {2 \left (\frac {\frac {3}{2} \sqrt [3]{a} \int \frac {1}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx-\frac {\int -\frac {\sqrt [3]{b} \left (\sqrt [3]{a}-2 \sqrt [3]{b} x\right )}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx}{2 \sqrt [3]{b}}}{3 a^{2/3}}+\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{2/3} \sqrt [3]{b}}\right )}{3 a}+\frac {x}{3 a \left (a+b x^3\right )}}{6 b}-\frac {x}{6 b \left (a+b x^3\right )^2}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\frac {2 \left (\frac {\frac {3}{2} \sqrt [3]{a} \int \frac {1}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx+\frac {\int \frac {\sqrt [3]{b} \left (\sqrt [3]{a}-2 \sqrt [3]{b} x\right )}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx}{2 \sqrt [3]{b}}}{3 a^{2/3}}+\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{2/3} \sqrt [3]{b}}\right )}{3 a}+\frac {x}{3 a \left (a+b x^3\right )}}{6 b}-\frac {x}{6 b \left (a+b x^3\right )^2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {2 \left (\frac {\frac {3}{2} \sqrt [3]{a} \int \frac {1}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx+\frac {1}{2} \int \frac {\sqrt [3]{a}-2 \sqrt [3]{b} x}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx}{3 a^{2/3}}+\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{2/3} \sqrt [3]{b}}\right )}{3 a}+\frac {x}{3 a \left (a+b x^3\right )}}{6 b}-\frac {x}{6 b \left (a+b x^3\right )^2}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {\frac {2 \left (\frac {\frac {1}{2} \int \frac {\sqrt [3]{a}-2 \sqrt [3]{b} x}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx+\frac {3 \int \frac {1}{-\left (1-\frac {2 \sqrt [3]{b} x}{\sqrt [3]{a}}\right )^2-3}d\left (1-\frac {2 \sqrt [3]{b} x}{\sqrt [3]{a}}\right )}{\sqrt [3]{b}}}{3 a^{2/3}}+\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{2/3} \sqrt [3]{b}}\right )}{3 a}+\frac {x}{3 a \left (a+b x^3\right )}}{6 b}-\frac {x}{6 b \left (a+b x^3\right )^2}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {\frac {2 \left (\frac {\frac {1}{2} \int \frac {\sqrt [3]{a}-2 \sqrt [3]{b} x}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx-\frac {\sqrt {3} \arctan \left (\frac {1-\frac {2 \sqrt [3]{b} x}{\sqrt [3]{a}}}{\sqrt {3}}\right )}{\sqrt [3]{b}}}{3 a^{2/3}}+\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{2/3} \sqrt [3]{b}}\right )}{3 a}+\frac {x}{3 a \left (a+b x^3\right )}}{6 b}-\frac {x}{6 b \left (a+b x^3\right )^2}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {\frac {2 \left (\frac {-\frac {\log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{2 \sqrt [3]{b}}-\frac {\sqrt {3} \arctan \left (\frac {1-\frac {2 \sqrt [3]{b} x}{\sqrt [3]{a}}}{\sqrt {3}}\right )}{\sqrt [3]{b}}}{3 a^{2/3}}+\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{2/3} \sqrt [3]{b}}\right )}{3 a}+\frac {x}{3 a \left (a+b x^3\right )}}{6 b}-\frac {x}{6 b \left (a+b x^3\right )^2}\)

Input:

Int[x^3/(a + b*x^3)^3,x]
 

Output:

-1/6*x/(b*(a + b*x^3)^2) + (x/(3*a*(a + b*x^3)) + (2*(Log[a^(1/3) + b^(1/3 
)*x]/(3*a^(2/3)*b^(1/3)) + (-((Sqrt[3]*ArcTan[(1 - (2*b^(1/3)*x)/a^(1/3))/ 
Sqrt[3]])/b^(1/3)) - Log[a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3)*x^2]/(2*b^( 
1/3)))/(3*a^(2/3))))/(3*a))/(6*b)
 

Defintions of rubi rules used

rule 16
Int[(c_.)/((a_.) + (b_.)*(x_)), x_Symbol] :> Simp[c*(Log[RemoveContent[a + 
b*x, x]]/b), x] /; FreeQ[{a, b, c}, x]
 

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 749
Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(-x)*((a + b*x^n)^(p + 
 1)/(a*n*(p + 1))), x] + Simp[(n*(p + 1) + 1)/(a*n*(p + 1))   Int[(a + b*x^ 
n)^(p + 1), x], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[p, -1] && (Inte 
gerQ[2*p] || Denominator[p + 1/n] < Denominator[p])
 

rule 750
Int[((a_) + (b_.)*(x_)^3)^(-1), x_Symbol] :> Simp[1/(3*Rt[a, 3]^2)   Int[1/ 
(Rt[a, 3] + Rt[b, 3]*x), x], x] + Simp[1/(3*Rt[a, 3]^2)   Int[(2*Rt[a, 3] - 
 Rt[b, 3]*x)/(Rt[a, 3]^2 - Rt[a, 3]*Rt[b, 3]*x + Rt[b, 3]^2*x^2), x], x] /; 
 FreeQ[{a, b}, x]
 

rule 817
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^( 
n - 1)*(c*x)^(m - n + 1)*((a + b*x^n)^(p + 1)/(b*n*(p + 1))), x] - Simp[c^n 
*((m - n + 1)/(b*n*(p + 1)))   Int[(c*x)^(m - n)*(a + b*x^n)^(p + 1), x], x 
] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m + 1, n] &&  ! 
ILtQ[(m + n*(p + 1) + 1)/n, 0] && IntBinomialQ[a, b, c, n, m, p, x]
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1142
Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[(2*c*d - b*e)/(2*c)   Int[1/(a + b*x + c*x^2), x], x] + Simp[e/(2*c) 
Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.45 (sec) , antiderivative size = 56, normalized size of antiderivative = 0.36

method result size
risch \(\frac {\frac {x^{4}}{18 a}-\frac {x}{9 b}}{\left (b \,x^{3}+a \right )^{2}}+\frac {\munderset {\textit {\_R} =\operatorname {RootOf}\left (b \,\textit {\_Z}^{3}+a \right )}{\sum }\frac {\ln \left (x -\textit {\_R} \right )}{\textit {\_R}^{2}}}{27 a \,b^{2}}\) \(56\)
default \(\frac {\frac {x^{4}}{18 a}-\frac {x}{9 b}}{\left (b \,x^{3}+a \right )^{2}}+\frac {\frac {\ln \left (x +\left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}{3 b \left (\frac {a}{b}\right )^{\frac {2}{3}}}-\frac {\ln \left (x^{2}-\left (\frac {a}{b}\right )^{\frac {1}{3}} x +\left (\frac {a}{b}\right )^{\frac {2}{3}}\right )}{6 b \left (\frac {a}{b}\right )^{\frac {2}{3}}}+\frac {\sqrt {3}\, \arctan \left (\frac {\sqrt {3}\, \left (\frac {2 x}{\left (\frac {a}{b}\right )^{\frac {1}{3}}}-1\right )}{3}\right )}{3 b \left (\frac {a}{b}\right )^{\frac {2}{3}}}}{9 a b}\) \(125\)

Input:

int(x^3/(b*x^3+a)^3,x,method=_RETURNVERBOSE)
 

Output:

(1/18/a*x^4-1/9*x/b)/(b*x^3+a)^2+1/27/a/b^2*sum(1/_R^2*ln(x-_R),_R=RootOf( 
_Z^3*b+a))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 231 vs. \(2 (113) = 226\).

Time = 0.08 (sec) , antiderivative size = 503, normalized size of antiderivative = 3.27 \[ \int \frac {x^3}{\left (a+b x^3\right )^3} \, dx=\left [\frac {3 \, a^{2} b^{2} x^{4} - 6 \, a^{3} b x + 3 \, \sqrt {\frac {1}{3}} {\left (a b^{3} x^{6} + 2 \, a^{2} b^{2} x^{3} + a^{3} b\right )} \sqrt {-\frac {\left (a^{2} b\right )^{\frac {1}{3}}}{b}} \log \left (\frac {2 \, a b x^{3} - 3 \, \left (a^{2} b\right )^{\frac {1}{3}} a x - a^{2} + 3 \, \sqrt {\frac {1}{3}} {\left (2 \, a b x^{2} + \left (a^{2} b\right )^{\frac {2}{3}} x - \left (a^{2} b\right )^{\frac {1}{3}} a\right )} \sqrt {-\frac {\left (a^{2} b\right )^{\frac {1}{3}}}{b}}}{b x^{3} + a}\right ) - {\left (b^{2} x^{6} + 2 \, a b x^{3} + a^{2}\right )} \left (a^{2} b\right )^{\frac {2}{3}} \log \left (a b x^{2} - \left (a^{2} b\right )^{\frac {2}{3}} x + \left (a^{2} b\right )^{\frac {1}{3}} a\right ) + 2 \, {\left (b^{2} x^{6} + 2 \, a b x^{3} + a^{2}\right )} \left (a^{2} b\right )^{\frac {2}{3}} \log \left (a b x + \left (a^{2} b\right )^{\frac {2}{3}}\right )}{54 \, {\left (a^{3} b^{4} x^{6} + 2 \, a^{4} b^{3} x^{3} + a^{5} b^{2}\right )}}, \frac {3 \, a^{2} b^{2} x^{4} - 6 \, a^{3} b x + 6 \, \sqrt {\frac {1}{3}} {\left (a b^{3} x^{6} + 2 \, a^{2} b^{2} x^{3} + a^{3} b\right )} \sqrt {\frac {\left (a^{2} b\right )^{\frac {1}{3}}}{b}} \arctan \left (\frac {\sqrt {\frac {1}{3}} {\left (2 \, \left (a^{2} b\right )^{\frac {2}{3}} x - \left (a^{2} b\right )^{\frac {1}{3}} a\right )} \sqrt {\frac {\left (a^{2} b\right )^{\frac {1}{3}}}{b}}}{a^{2}}\right ) - {\left (b^{2} x^{6} + 2 \, a b x^{3} + a^{2}\right )} \left (a^{2} b\right )^{\frac {2}{3}} \log \left (a b x^{2} - \left (a^{2} b\right )^{\frac {2}{3}} x + \left (a^{2} b\right )^{\frac {1}{3}} a\right ) + 2 \, {\left (b^{2} x^{6} + 2 \, a b x^{3} + a^{2}\right )} \left (a^{2} b\right )^{\frac {2}{3}} \log \left (a b x + \left (a^{2} b\right )^{\frac {2}{3}}\right )}{54 \, {\left (a^{3} b^{4} x^{6} + 2 \, a^{4} b^{3} x^{3} + a^{5} b^{2}\right )}}\right ] \] Input:

integrate(x^3/(b*x^3+a)^3,x, algorithm="fricas")
 

Output:

[1/54*(3*a^2*b^2*x^4 - 6*a^3*b*x + 3*sqrt(1/3)*(a*b^3*x^6 + 2*a^2*b^2*x^3 
+ a^3*b)*sqrt(-(a^2*b)^(1/3)/b)*log((2*a*b*x^3 - 3*(a^2*b)^(1/3)*a*x - a^2 
 + 3*sqrt(1/3)*(2*a*b*x^2 + (a^2*b)^(2/3)*x - (a^2*b)^(1/3)*a)*sqrt(-(a^2* 
b)^(1/3)/b))/(b*x^3 + a)) - (b^2*x^6 + 2*a*b*x^3 + a^2)*(a^2*b)^(2/3)*log( 
a*b*x^2 - (a^2*b)^(2/3)*x + (a^2*b)^(1/3)*a) + 2*(b^2*x^6 + 2*a*b*x^3 + a^ 
2)*(a^2*b)^(2/3)*log(a*b*x + (a^2*b)^(2/3)))/(a^3*b^4*x^6 + 2*a^4*b^3*x^3 
+ a^5*b^2), 1/54*(3*a^2*b^2*x^4 - 6*a^3*b*x + 6*sqrt(1/3)*(a*b^3*x^6 + 2*a 
^2*b^2*x^3 + a^3*b)*sqrt((a^2*b)^(1/3)/b)*arctan(sqrt(1/3)*(2*(a^2*b)^(2/3 
)*x - (a^2*b)^(1/3)*a)*sqrt((a^2*b)^(1/3)/b)/a^2) - (b^2*x^6 + 2*a*b*x^3 + 
 a^2)*(a^2*b)^(2/3)*log(a*b*x^2 - (a^2*b)^(2/3)*x + (a^2*b)^(1/3)*a) + 2*( 
b^2*x^6 + 2*a*b*x^3 + a^2)*(a^2*b)^(2/3)*log(a*b*x + (a^2*b)^(2/3)))/(a^3* 
b^4*x^6 + 2*a^4*b^3*x^3 + a^5*b^2)]
 

Sympy [A] (verification not implemented)

Time = 0.22 (sec) , antiderivative size = 65, normalized size of antiderivative = 0.42 \[ \int \frac {x^3}{\left (a+b x^3\right )^3} \, dx=\frac {- 2 a x + b x^{4}}{18 a^{3} b + 36 a^{2} b^{2} x^{3} + 18 a b^{3} x^{6}} + \operatorname {RootSum} {\left (19683 t^{3} a^{5} b^{4} - 1, \left ( t \mapsto t \log {\left (27 t a^{2} b + x \right )} \right )\right )} \] Input:

integrate(x**3/(b*x**3+a)**3,x)
                                                                                    
                                                                                    
 

Output:

(-2*a*x + b*x**4)/(18*a**3*b + 36*a**2*b**2*x**3 + 18*a*b**3*x**6) + RootS 
um(19683*_t**3*a**5*b**4 - 1, Lambda(_t, _t*log(27*_t*a**2*b + x)))
 

Maxima [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 146, normalized size of antiderivative = 0.95 \[ \int \frac {x^3}{\left (a+b x^3\right )^3} \, dx=\frac {b x^{4} - 2 \, a x}{18 \, {\left (a b^{3} x^{6} + 2 \, a^{2} b^{2} x^{3} + a^{3} b\right )}} + \frac {\sqrt {3} \arctan \left (\frac {\sqrt {3} {\left (2 \, x - \left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}}{3 \, \left (\frac {a}{b}\right )^{\frac {1}{3}}}\right )}{27 \, a b^{2} \left (\frac {a}{b}\right )^{\frac {2}{3}}} - \frac {\log \left (x^{2} - x \left (\frac {a}{b}\right )^{\frac {1}{3}} + \left (\frac {a}{b}\right )^{\frac {2}{3}}\right )}{54 \, a b^{2} \left (\frac {a}{b}\right )^{\frac {2}{3}}} + \frac {\log \left (x + \left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}{27 \, a b^{2} \left (\frac {a}{b}\right )^{\frac {2}{3}}} \] Input:

integrate(x^3/(b*x^3+a)^3,x, algorithm="maxima")
 

Output:

1/18*(b*x^4 - 2*a*x)/(a*b^3*x^6 + 2*a^2*b^2*x^3 + a^3*b) + 1/27*sqrt(3)*ar 
ctan(1/3*sqrt(3)*(2*x - (a/b)^(1/3))/(a/b)^(1/3))/(a*b^2*(a/b)^(2/3)) - 1/ 
54*log(x^2 - x*(a/b)^(1/3) + (a/b)^(2/3))/(a*b^2*(a/b)^(2/3)) + 1/27*log(x 
 + (a/b)^(1/3))/(a*b^2*(a/b)^(2/3))
 

Giac [A] (verification not implemented)

Time = 0.13 (sec) , antiderivative size = 142, normalized size of antiderivative = 0.92 \[ \int \frac {x^3}{\left (a+b x^3\right )^3} \, dx=-\frac {\left (-\frac {a}{b}\right )^{\frac {1}{3}} \log \left ({\left | x - \left (-\frac {a}{b}\right )^{\frac {1}{3}} \right |}\right )}{27 \, a^{2} b} + \frac {\sqrt {3} \left (-a b^{2}\right )^{\frac {1}{3}} \arctan \left (\frac {\sqrt {3} {\left (2 \, x + \left (-\frac {a}{b}\right )^{\frac {1}{3}}\right )}}{3 \, \left (-\frac {a}{b}\right )^{\frac {1}{3}}}\right )}{27 \, a^{2} b^{2}} + \frac {\left (-a b^{2}\right )^{\frac {1}{3}} \log \left (x^{2} + x \left (-\frac {a}{b}\right )^{\frac {1}{3}} + \left (-\frac {a}{b}\right )^{\frac {2}{3}}\right )}{54 \, a^{2} b^{2}} + \frac {b x^{4} - 2 \, a x}{18 \, {\left (b x^{3} + a\right )}^{2} a b} \] Input:

integrate(x^3/(b*x^3+a)^3,x, algorithm="giac")
 

Output:

-1/27*(-a/b)^(1/3)*log(abs(x - (-a/b)^(1/3)))/(a^2*b) + 1/27*sqrt(3)*(-a*b 
^2)^(1/3)*arctan(1/3*sqrt(3)*(2*x + (-a/b)^(1/3))/(-a/b)^(1/3))/(a^2*b^2) 
+ 1/54*(-a*b^2)^(1/3)*log(x^2 + x*(-a/b)^(1/3) + (-a/b)^(2/3))/(a^2*b^2) + 
 1/18*(b*x^4 - 2*a*x)/((b*x^3 + a)^2*a*b)
 

Mupad [B] (verification not implemented)

Time = 0.33 (sec) , antiderivative size = 145, normalized size of antiderivative = 0.94 \[ \int \frac {x^3}{\left (a+b x^3\right )^3} \, dx=\frac {\ln \left (\frac {b^{2/3}}{3\,a^{2/3}}+\frac {b\,x}{3\,a}\right )}{27\,a^{5/3}\,b^{4/3}}-\frac {\frac {x}{9\,b}-\frac {x^4}{18\,a}}{a^2+2\,a\,b\,x^3+b^2\,x^6}+\frac {\ln \left (\frac {b\,x}{3\,a}+\frac {b^{2/3}\,\left (-1+\sqrt {3}\,1{}\mathrm {i}\right )}{6\,a^{2/3}}\right )\,\left (-1+\sqrt {3}\,1{}\mathrm {i}\right )}{54\,a^{5/3}\,b^{4/3}}-\frac {\ln \left (\frac {b\,x}{3\,a}-\frac {b^{2/3}\,\left (1+\sqrt {3}\,1{}\mathrm {i}\right )}{6\,a^{2/3}}\right )\,\left (1+\sqrt {3}\,1{}\mathrm {i}\right )}{54\,a^{5/3}\,b^{4/3}} \] Input:

int(x^3/(a + b*x^3)^3,x)
 

Output:

log(b^(2/3)/(3*a^(2/3)) + (b*x)/(3*a))/(27*a^(5/3)*b^(4/3)) - (x/(9*b) - x 
^4/(18*a))/(a^2 + b^2*x^6 + 2*a*b*x^3) + (log((b*x)/(3*a) + (b^(2/3)*(3^(1 
/2)*1i - 1))/(6*a^(2/3)))*(3^(1/2)*1i - 1))/(54*a^(5/3)*b^(4/3)) - (log((b 
*x)/(3*a) - (b^(2/3)*(3^(1/2)*1i + 1))/(6*a^(2/3)))*(3^(1/2)*1i + 1))/(54* 
a^(5/3)*b^(4/3))
 

Reduce [B] (verification not implemented)

Time = 0.26 (sec) , antiderivative size = 278, normalized size of antiderivative = 1.81 \[ \int \frac {x^3}{\left (a+b x^3\right )^3} \, dx=\frac {-2 a^{\frac {7}{3}} \sqrt {3}\, \mathit {atan} \left (\frac {a^{\frac {1}{3}}-2 b^{\frac {1}{3}} x}{a^{\frac {1}{3}} \sqrt {3}}\right )-4 a^{\frac {4}{3}} \sqrt {3}\, \mathit {atan} \left (\frac {a^{\frac {1}{3}}-2 b^{\frac {1}{3}} x}{a^{\frac {1}{3}} \sqrt {3}}\right ) b \,x^{3}-2 a^{\frac {1}{3}} \sqrt {3}\, \mathit {atan} \left (\frac {a^{\frac {1}{3}}-2 b^{\frac {1}{3}} x}{a^{\frac {1}{3}} \sqrt {3}}\right ) b^{2} x^{6}-a^{\frac {7}{3}} \mathrm {log}\left (a^{\frac {2}{3}}-b^{\frac {1}{3}} a^{\frac {1}{3}} x +b^{\frac {2}{3}} x^{2}\right )-2 a^{\frac {4}{3}} \mathrm {log}\left (a^{\frac {2}{3}}-b^{\frac {1}{3}} a^{\frac {1}{3}} x +b^{\frac {2}{3}} x^{2}\right ) b \,x^{3}-a^{\frac {1}{3}} \mathrm {log}\left (a^{\frac {2}{3}}-b^{\frac {1}{3}} a^{\frac {1}{3}} x +b^{\frac {2}{3}} x^{2}\right ) b^{2} x^{6}+2 a^{\frac {7}{3}} \mathrm {log}\left (a^{\frac {1}{3}}+b^{\frac {1}{3}} x \right )+4 a^{\frac {4}{3}} \mathrm {log}\left (a^{\frac {1}{3}}+b^{\frac {1}{3}} x \right ) b \,x^{3}+2 a^{\frac {1}{3}} \mathrm {log}\left (a^{\frac {1}{3}}+b^{\frac {1}{3}} x \right ) b^{2} x^{6}-6 b^{\frac {1}{3}} a^{2} x +3 b^{\frac {4}{3}} a \,x^{4}}{54 b^{\frac {4}{3}} a^{2} \left (b^{2} x^{6}+2 a b \,x^{3}+a^{2}\right )} \] Input:

int(x^3/(b*x^3+a)^3,x)
 

Output:

( - 2*a**(1/3)*sqrt(3)*atan((a**(1/3) - 2*b**(1/3)*x)/(a**(1/3)*sqrt(3)))* 
a**2 - 4*a**(1/3)*sqrt(3)*atan((a**(1/3) - 2*b**(1/3)*x)/(a**(1/3)*sqrt(3) 
))*a*b*x**3 - 2*a**(1/3)*sqrt(3)*atan((a**(1/3) - 2*b**(1/3)*x)/(a**(1/3)* 
sqrt(3)))*b**2*x**6 - a**(1/3)*log(a**(2/3) - b**(1/3)*a**(1/3)*x + b**(2/ 
3)*x**2)*a**2 - 2*a**(1/3)*log(a**(2/3) - b**(1/3)*a**(1/3)*x + b**(2/3)*x 
**2)*a*b*x**3 - a**(1/3)*log(a**(2/3) - b**(1/3)*a**(1/3)*x + b**(2/3)*x** 
2)*b**2*x**6 + 2*a**(1/3)*log(a**(1/3) + b**(1/3)*x)*a**2 + 4*a**(1/3)*log 
(a**(1/3) + b**(1/3)*x)*a*b*x**3 + 2*a**(1/3)*log(a**(1/3) + b**(1/3)*x)*b 
**2*x**6 - 6*b**(1/3)*a**2*x + 3*b**(1/3)*a*b*x**4)/(54*b**(1/3)*a**2*b*(a 
**2 + 2*a*b*x**3 + b**2*x**6))