\(\int x^6 \sqrt {a+b x^3} \, dx\) [170]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 15, antiderivative size = 275 \[ \int x^6 \sqrt {a+b x^3} \, dx=-\frac {48 a^2 x \sqrt {a+b x^3}}{935 b^2}+\frac {6 a x^4 \sqrt {a+b x^3}}{187 b}+\frac {2}{17} x^7 \sqrt {a+b x^3}+\frac {32\ 3^{3/4} \sqrt {2+\sqrt {3}} a^3 \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}{\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}\right ),-7-4 \sqrt {3}\right )}{935 b^{7/3} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}} \] Output:

-48/935*a^2*x*(b*x^3+a)^(1/2)/b^2+6/187*a*x^4*(b*x^3+a)^(1/2)/b+2/17*x^7*( 
b*x^3+a)^(1/2)+32/935*3^(3/4)*(1/2*6^(1/2)+1/2*2^(1/2))*a^3*(a^(1/3)+b^(1/ 
3)*x)*((a^(2/3)-a^(1/3)*b^(1/3)*x+b^(2/3)*x^2)/((1+3^(1/2))*a^(1/3)+b^(1/3 
)*x)^2)^(1/2)*EllipticF(((1-3^(1/2))*a^(1/3)+b^(1/3)*x)/((1+3^(1/2))*a^(1/ 
3)+b^(1/3)*x),I*3^(1/2)+2*I)/b^(7/3)/(a^(1/3)*(a^(1/3)+b^(1/3)*x)/((1+3^(1 
/2))*a^(1/3)+b^(1/3)*x)^2)^(1/2)/(b*x^3+a)^(1/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 4.13 (sec) , antiderivative size = 94, normalized size of antiderivative = 0.34 \[ \int x^6 \sqrt {a+b x^3} \, dx=\frac {2 x \sqrt {a+b x^3} \left (\sqrt {1+\frac {b x^3}{a}} \left (-8 a^2+3 a b x^3+11 b^2 x^6\right )+8 a^2 \operatorname {Hypergeometric2F1}\left (-\frac {1}{2},\frac {1}{3},\frac {4}{3},-\frac {b x^3}{a}\right )\right )}{187 b^2 \sqrt {1+\frac {b x^3}{a}}} \] Input:

Integrate[x^6*Sqrt[a + b*x^3],x]
 

Output:

(2*x*Sqrt[a + b*x^3]*(Sqrt[1 + (b*x^3)/a]*(-8*a^2 + 3*a*b*x^3 + 11*b^2*x^6 
) + 8*a^2*Hypergeometric2F1[-1/2, 1/3, 4/3, -((b*x^3)/a)]))/(187*b^2*Sqrt[ 
1 + (b*x^3)/a])
 

Rubi [A] (verified)

Time = 0.52 (sec) , antiderivative size = 284, normalized size of antiderivative = 1.03, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.267, Rules used = {811, 843, 843, 759}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int x^6 \sqrt {a+b x^3} \, dx\)

\(\Big \downarrow \) 811

\(\displaystyle \frac {3}{17} a \int \frac {x^6}{\sqrt {b x^3+a}}dx+\frac {2}{17} x^7 \sqrt {a+b x^3}\)

\(\Big \downarrow \) 843

\(\displaystyle \frac {3}{17} a \left (\frac {2 x^4 \sqrt {a+b x^3}}{11 b}-\frac {8 a \int \frac {x^3}{\sqrt {b x^3+a}}dx}{11 b}\right )+\frac {2}{17} x^7 \sqrt {a+b x^3}\)

\(\Big \downarrow \) 843

\(\displaystyle \frac {3}{17} a \left (\frac {2 x^4 \sqrt {a+b x^3}}{11 b}-\frac {8 a \left (\frac {2 x \sqrt {a+b x^3}}{5 b}-\frac {2 a \int \frac {1}{\sqrt {b x^3+a}}dx}{5 b}\right )}{11 b}\right )+\frac {2}{17} x^7 \sqrt {a+b x^3}\)

\(\Big \downarrow \) 759

\(\displaystyle \frac {3}{17} a \left (\frac {2 x^4 \sqrt {a+b x^3}}{11 b}-\frac {8 a \left (\frac {2 x \sqrt {a+b x^3}}{5 b}-\frac {4 \sqrt {2+\sqrt {3}} a \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [3]{b} x+\left (1-\sqrt {3}\right ) \sqrt [3]{a}}{\sqrt [3]{b} x+\left (1+\sqrt {3}\right ) \sqrt [3]{a}}\right ),-7-4 \sqrt {3}\right )}{5 \sqrt [4]{3} b^{4/3} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}}\right )}{11 b}\right )+\frac {2}{17} x^7 \sqrt {a+b x^3}\)

Input:

Int[x^6*Sqrt[a + b*x^3],x]
 

Output:

(2*x^7*Sqrt[a + b*x^3])/17 + (3*a*((2*x^4*Sqrt[a + b*x^3])/(11*b) - (8*a*( 
(2*x*Sqrt[a + b*x^3])/(5*b) - (4*Sqrt[2 + Sqrt[3]]*a*(a^(1/3) + b^(1/3)*x) 
*Sqrt[(a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3)*x^2)/((1 + Sqrt[3])*a^(1/3) + 
 b^(1/3)*x)^2]*EllipticF[ArcSin[((1 - Sqrt[3])*a^(1/3) + b^(1/3)*x)/((1 + 
Sqrt[3])*a^(1/3) + b^(1/3)*x)], -7 - 4*Sqrt[3]])/(5*3^(1/4)*b^(4/3)*Sqrt[( 
a^(1/3)*(a^(1/3) + b^(1/3)*x))/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)^2]*Sqrt 
[a + b*x^3])))/(11*b)))/17
 

Defintions of rubi rules used

rule 759
Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], 
s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt[2 + Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s 
*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[s* 
((s + r*x)/((1 + Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 - Sqrt[3])*s 
+ r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x] & 
& PosQ[a]
 

rule 811
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c* 
x)^(m + 1)*((a + b*x^n)^p/(c*(m + n*p + 1))), x] + Simp[a*n*(p/(m + n*p + 1 
))   Int[(c*x)^m*(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b, c, m}, x] && I 
GtQ[n, 0] && GtQ[p, 0] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b, c, n, m 
, p, x]
 

rule 843
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(n 
 - 1)*(c*x)^(m - n + 1)*((a + b*x^n)^(p + 1)/(b*(m + n*p + 1))), x] - Simp[ 
a*c^n*((m - n + 1)/(b*(m + n*p + 1)))   Int[(c*x)^(m - n)*(a + b*x^n)^p, x] 
, x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n* 
p + 1, 0] && IntBinomialQ[a, b, c, n, m, p, x]
 
Maple [A] (verified)

Time = 0.61 (sec) , antiderivative size = 323, normalized size of antiderivative = 1.17

method result size
risch \(-\frac {2 x \left (-55 b^{2} x^{6}-15 a b \,x^{3}+24 a^{2}\right ) \sqrt {b \,x^{3}+a}}{935 b^{2}}-\frac {32 i a^{3} \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}} \sqrt {\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, \sqrt {\frac {x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}}{-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}}}\, \sqrt {-\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, \operatorname {EllipticF}\left (\frac {\sqrt {3}\, \sqrt {\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}}{3}, \sqrt {\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{b \left (-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}}\right )}{935 b^{3} \sqrt {b \,x^{3}+a}}\) \(323\)
default \(\frac {2 x^{7} \sqrt {b \,x^{3}+a}}{17}+\frac {6 a \,x^{4} \sqrt {b \,x^{3}+a}}{187 b}-\frac {48 a^{2} x \sqrt {b \,x^{3}+a}}{935 b^{2}}-\frac {32 i a^{3} \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}} \sqrt {\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, \sqrt {\frac {x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}}{-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}}}\, \sqrt {-\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, \operatorname {EllipticF}\left (\frac {\sqrt {3}\, \sqrt {\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}}{3}, \sqrt {\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{b \left (-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}}\right )}{935 b^{3} \sqrt {b \,x^{3}+a}}\) \(337\)
elliptic \(\frac {2 x^{7} \sqrt {b \,x^{3}+a}}{17}+\frac {6 a \,x^{4} \sqrt {b \,x^{3}+a}}{187 b}-\frac {48 a^{2} x \sqrt {b \,x^{3}+a}}{935 b^{2}}-\frac {32 i a^{3} \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}} \sqrt {\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, \sqrt {\frac {x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}}{-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}}}\, \sqrt {-\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, \operatorname {EllipticF}\left (\frac {\sqrt {3}\, \sqrt {\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}}{3}, \sqrt {\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{b \left (-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}}\right )}{935 b^{3} \sqrt {b \,x^{3}+a}}\) \(337\)

Input:

int(x^6*(b*x^3+a)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

-2/935*x*(-55*b^2*x^6-15*a*b*x^3+24*a^2)*(b*x^3+a)^(1/2)/b^2-32/935*I*a^3/ 
b^3*3^(1/2)*(-a*b^2)^(1/3)*(I*(x+1/2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2)/b*(-a* 
b^2)^(1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2)*((x-1/b*(-a*b^2)^(1/3))/(-3/2/ 
b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3)))^(1/2)*(-I*(x+1/2/b*(-a*b 
^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2)/ 
(b*x^3+a)^(1/2)*EllipticF(1/3*3^(1/2)*(I*(x+1/2/b*(-a*b^2)^(1/3)-1/2*I*3^( 
1/2)/b*(-a*b^2)^(1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2),(I*3^(1/2)/b*(-a*b^ 
2)^(1/3)/(-3/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3)))^(1/2))
 

Fricas [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 58, normalized size of antiderivative = 0.21 \[ \int x^6 \sqrt {a+b x^3} \, dx=\frac {2 \, {\left (48 \, a^{3} \sqrt {b} {\rm weierstrassPInverse}\left (0, -\frac {4 \, a}{b}, x\right ) + {\left (55 \, b^{3} x^{7} + 15 \, a b^{2} x^{4} - 24 \, a^{2} b x\right )} \sqrt {b x^{3} + a}\right )}}{935 \, b^{3}} \] Input:

integrate(x^6*(b*x^3+a)^(1/2),x, algorithm="fricas")
 

Output:

2/935*(48*a^3*sqrt(b)*weierstrassPInverse(0, -4*a/b, x) + (55*b^3*x^7 + 15 
*a*b^2*x^4 - 24*a^2*b*x)*sqrt(b*x^3 + a))/b^3
 

Sympy [A] (verification not implemented)

Time = 0.52 (sec) , antiderivative size = 39, normalized size of antiderivative = 0.14 \[ \int x^6 \sqrt {a+b x^3} \, dx=\frac {\sqrt {a} x^{7} \Gamma \left (\frac {7}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {1}{2}, \frac {7}{3} \\ \frac {10}{3} \end {matrix}\middle | {\frac {b x^{3} e^{i \pi }}{a}} \right )}}{3 \Gamma \left (\frac {10}{3}\right )} \] Input:

integrate(x**6*(b*x**3+a)**(1/2),x)
 

Output:

sqrt(a)*x**7*gamma(7/3)*hyper((-1/2, 7/3), (10/3,), b*x**3*exp_polar(I*pi) 
/a)/(3*gamma(10/3))
 

Maxima [F]

\[ \int x^6 \sqrt {a+b x^3} \, dx=\int { \sqrt {b x^{3} + a} x^{6} \,d x } \] Input:

integrate(x^6*(b*x^3+a)^(1/2),x, algorithm="maxima")
 

Output:

integrate(sqrt(b*x^3 + a)*x^6, x)
 

Giac [F]

\[ \int x^6 \sqrt {a+b x^3} \, dx=\int { \sqrt {b x^{3} + a} x^{6} \,d x } \] Input:

integrate(x^6*(b*x^3+a)^(1/2),x, algorithm="giac")
 

Output:

integrate(sqrt(b*x^3 + a)*x^6, x)
 

Mupad [F(-1)]

Timed out. \[ \int x^6 \sqrt {a+b x^3} \, dx=\int x^6\,\sqrt {b\,x^3+a} \,d x \] Input:

int(x^6*(a + b*x^3)^(1/2),x)
 

Output:

int(x^6*(a + b*x^3)^(1/2), x)
 

Reduce [F]

\[ \int x^6 \sqrt {a+b x^3} \, dx=\frac {-\frac {48 \sqrt {b \,x^{3}+a}\, a^{2} x}{935}+\frac {6 \sqrt {b \,x^{3}+a}\, a b \,x^{4}}{187}+\frac {2 \sqrt {b \,x^{3}+a}\, b^{2} x^{7}}{17}+\frac {48 \left (\int \frac {\sqrt {b \,x^{3}+a}}{b \,x^{3}+a}d x \right ) a^{3}}{935}}{b^{2}} \] Input:

int(x^6*(b*x^3+a)^(1/2),x)
                                                                                    
                                                                                    
 

Output:

(2*( - 24*sqrt(a + b*x**3)*a**2*x + 15*sqrt(a + b*x**3)*a*b*x**4 + 55*sqrt 
(a + b*x**3)*b**2*x**7 + 24*int(sqrt(a + b*x**3)/(a + b*x**3),x)*a**3))/(9 
35*b**2)