\(\int \sqrt {a+b x^3} \, dx\) [172]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [F]
Giac [F]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 11, antiderivative size = 227 \[ \int \sqrt {a+b x^3} \, dx=\frac {2}{5} x \sqrt {a+b x^3}+\frac {2\ 3^{3/4} \sqrt {2+\sqrt {3}} a \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}{\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}\right ),-7-4 \sqrt {3}\right )}{5 \sqrt [3]{b} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}} \] Output:

2/5*x*(b*x^3+a)^(1/2)+2/5*3^(3/4)*(1/2*6^(1/2)+1/2*2^(1/2))*a*(a^(1/3)+b^( 
1/3)*x)*((a^(2/3)-a^(1/3)*b^(1/3)*x+b^(2/3)*x^2)/((1+3^(1/2))*a^(1/3)+b^(1 
/3)*x)^2)^(1/2)*EllipticF(((1-3^(1/2))*a^(1/3)+b^(1/3)*x)/((1+3^(1/2))*a^( 
1/3)+b^(1/3)*x),I*3^(1/2)+2*I)/b^(1/3)/(a^(1/3)*(a^(1/3)+b^(1/3)*x)/((1+3^ 
(1/2))*a^(1/3)+b^(1/3)*x)^2)^(1/2)/(b*x^3+a)^(1/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 0.00 (sec) , antiderivative size = 46, normalized size of antiderivative = 0.20 \[ \int \sqrt {a+b x^3} \, dx=\frac {x \sqrt {a+b x^3} \operatorname {Hypergeometric2F1}\left (-\frac {1}{2},\frac {1}{3},\frac {4}{3},-\frac {b x^3}{a}\right )}{\sqrt {1+\frac {b x^3}{a}}} \] Input:

Integrate[Sqrt[a + b*x^3],x]
 

Output:

(x*Sqrt[a + b*x^3]*Hypergeometric2F1[-1/2, 1/3, 4/3, -((b*x^3)/a)])/Sqrt[1 
 + (b*x^3)/a]
 

Rubi [A] (verified)

Time = 0.39 (sec) , antiderivative size = 227, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.182, Rules used = {748, 759}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sqrt {a+b x^3} \, dx\)

\(\Big \downarrow \) 748

\(\displaystyle \frac {3}{5} a \int \frac {1}{\sqrt {b x^3+a}}dx+\frac {2}{5} x \sqrt {a+b x^3}\)

\(\Big \downarrow \) 759

\(\displaystyle \frac {2\ 3^{3/4} \sqrt {2+\sqrt {3}} a \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [3]{b} x+\left (1-\sqrt {3}\right ) \sqrt [3]{a}}{\sqrt [3]{b} x+\left (1+\sqrt {3}\right ) \sqrt [3]{a}}\right ),-7-4 \sqrt {3}\right )}{5 \sqrt [3]{b} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}}+\frac {2}{5} x \sqrt {a+b x^3}\)

Input:

Int[Sqrt[a + b*x^3],x]
 

Output:

(2*x*Sqrt[a + b*x^3])/5 + (2*3^(3/4)*Sqrt[2 + Sqrt[3]]*a*(a^(1/3) + b^(1/3 
)*x)*Sqrt[(a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3)*x^2)/((1 + Sqrt[3])*a^(1/ 
3) + b^(1/3)*x)^2]*EllipticF[ArcSin[((1 - Sqrt[3])*a^(1/3) + b^(1/3)*x)/(( 
1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)], -7 - 4*Sqrt[3]])/(5*b^(1/3)*Sqrt[(a^(1 
/3)*(a^(1/3) + b^(1/3)*x))/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)^2]*Sqrt[a + 
 b*x^3])
 

Defintions of rubi rules used

rule 748
Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[x*((a + b*x^n)^p/(n*p 
+ 1)), x] + Simp[a*n*(p/(n*p + 1))   Int[(a + b*x^n)^(p - 1), x], x] /; Fre 
eQ[{a, b}, x] && IGtQ[n, 0] && GtQ[p, 0] && (IntegerQ[2*p] || LtQ[Denominat 
or[p + 1/n], Denominator[p]])
 

rule 759
Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], 
s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt[2 + Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s 
*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[s* 
((s + r*x)/((1 + Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 - Sqrt[3])*s 
+ r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x] & 
& PosQ[a]
 
Maple [A] (verified)

Time = 0.48 (sec) , antiderivative size = 297, normalized size of antiderivative = 1.31

method result size
default \(\frac {2 x \sqrt {b \,x^{3}+a}}{5}-\frac {2 i a \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}} \sqrt {\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, \sqrt {\frac {x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}}{-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}}}\, \sqrt {-\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, \operatorname {EllipticF}\left (\frac {\sqrt {3}\, \sqrt {\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}}{3}, \sqrt {\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{b \left (-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}}\right )}{5 b \sqrt {b \,x^{3}+a}}\) \(297\)
risch \(\frac {2 x \sqrt {b \,x^{3}+a}}{5}-\frac {2 i a \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}} \sqrt {\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, \sqrt {\frac {x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}}{-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}}}\, \sqrt {-\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, \operatorname {EllipticF}\left (\frac {\sqrt {3}\, \sqrt {\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}}{3}, \sqrt {\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{b \left (-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}}\right )}{5 b \sqrt {b \,x^{3}+a}}\) \(297\)
elliptic \(\frac {2 x \sqrt {b \,x^{3}+a}}{5}-\frac {2 i a \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}} \sqrt {\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, \sqrt {\frac {x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}}{-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}}}\, \sqrt {-\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, \operatorname {EllipticF}\left (\frac {\sqrt {3}\, \sqrt {\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}}{3}, \sqrt {\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{b \left (-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}}\right )}{5 b \sqrt {b \,x^{3}+a}}\) \(297\)

Input:

int((b*x^3+a)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

2/5*x*(b*x^3+a)^(1/2)-2/5*I*a*3^(1/2)/b*(-a*b^2)^(1/3)*(I*(x+1/2/b*(-a*b^2 
)^(1/3)-1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2)*(( 
x-1/b*(-a*b^2)^(1/3))/(-3/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3 
)))^(1/2)*(-I*(x+1/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*3^(1 
/2)*b/(-a*b^2)^(1/3))^(1/2)/(b*x^3+a)^(1/2)*EllipticF(1/3*3^(1/2)*(I*(x+1/ 
2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*3^(1/2)*b/(-a*b^2)^(1/3 
))^(1/2),(I*3^(1/2)/b*(-a*b^2)^(1/3)/(-3/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/ 
b*(-a*b^2)^(1/3)))^(1/2))
 

Fricas [A] (verification not implemented)

Time = 0.07 (sec) , antiderivative size = 33, normalized size of antiderivative = 0.15 \[ \int \sqrt {a+b x^3} \, dx=\frac {2 \, {\left (\sqrt {b x^{3} + a} b x + 3 \, a \sqrt {b} {\rm weierstrassPInverse}\left (0, -\frac {4 \, a}{b}, x\right )\right )}}{5 \, b} \] Input:

integrate((b*x^3+a)^(1/2),x, algorithm="fricas")
 

Output:

2/5*(sqrt(b*x^3 + a)*b*x + 3*a*sqrt(b)*weierstrassPInverse(0, -4*a/b, x))/ 
b
 

Sympy [A] (verification not implemented)

Time = 0.50 (sec) , antiderivative size = 37, normalized size of antiderivative = 0.16 \[ \int \sqrt {a+b x^3} \, dx=\frac {\sqrt {a} x \Gamma \left (\frac {1}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {1}{2}, \frac {1}{3} \\ \frac {4}{3} \end {matrix}\middle | {\frac {b x^{3} e^{i \pi }}{a}} \right )}}{3 \Gamma \left (\frac {4}{3}\right )} \] Input:

integrate((b*x**3+a)**(1/2),x)
                                                                                    
                                                                                    
 

Output:

sqrt(a)*x*gamma(1/3)*hyper((-1/2, 1/3), (4/3,), b*x**3*exp_polar(I*pi)/a)/ 
(3*gamma(4/3))
 

Maxima [F]

\[ \int \sqrt {a+b x^3} \, dx=\int { \sqrt {b x^{3} + a} \,d x } \] Input:

integrate((b*x^3+a)^(1/2),x, algorithm="maxima")
 

Output:

integrate(sqrt(b*x^3 + a), x)
 

Giac [F]

\[ \int \sqrt {a+b x^3} \, dx=\int { \sqrt {b x^{3} + a} \,d x } \] Input:

integrate((b*x^3+a)^(1/2),x, algorithm="giac")
 

Output:

integrate(sqrt(b*x^3 + a), x)
 

Mupad [B] (verification not implemented)

Time = 0.18 (sec) , antiderivative size = 37, normalized size of antiderivative = 0.16 \[ \int \sqrt {a+b x^3} \, dx=\frac {x\,\sqrt {b\,x^3+a}\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{2},\frac {1}{3};\ \frac {4}{3};\ -\frac {b\,x^3}{a}\right )}{\sqrt {\frac {b\,x^3}{a}+1}} \] Input:

int((a + b*x^3)^(1/2),x)
 

Output:

(x*(a + b*x^3)^(1/2)*hypergeom([-1/2, 1/3], 4/3, -(b*x^3)/a))/((b*x^3)/a + 
 1)^(1/2)
 

Reduce [F]

\[ \int \sqrt {a+b x^3} \, dx=\frac {2 \sqrt {b \,x^{3}+a}\, x}{5}+\frac {3 \left (\int \frac {\sqrt {b \,x^{3}+a}}{b \,x^{3}+a}d x \right ) a}{5} \] Input:

int((b*x^3+a)^(1/2),x)
 

Output:

(2*sqrt(a + b*x**3)*x + 3*int(sqrt(a + b*x**3)/(a + b*x**3),x)*a)/5