\(\int \frac {x^7}{\sqrt {1-x^3}} \, dx\) [263]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [A] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [F]
Giac [F]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 15, antiderivative size = 294 \[ \int \frac {x^7}{\sqrt {1-x^3}} \, dx=\frac {80 \sqrt {1-x^3}}{91 \left (1+\sqrt {3}-x\right )}-\frac {20}{91} x^2 \sqrt {1-x^3}-\frac {2}{13} x^5 \sqrt {1-x^3}-\frac {40 \sqrt [4]{3} \sqrt {2-\sqrt {3}} (1-x) \sqrt {\frac {1+x+x^2}{\left (1+\sqrt {3}-x\right )^2}} E\left (\arcsin \left (\frac {1-\sqrt {3}-x}{1+\sqrt {3}-x}\right )|-7-4 \sqrt {3}\right )}{91 \sqrt {\frac {1-x}{\left (1+\sqrt {3}-x\right )^2}} \sqrt {1-x^3}}+\frac {80 \sqrt {2} (1-x) \sqrt {\frac {1+x+x^2}{\left (1+\sqrt {3}-x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {1-\sqrt {3}-x}{1+\sqrt {3}-x}\right ),-7-4 \sqrt {3}\right )}{91 \sqrt [4]{3} \sqrt {\frac {1-x}{\left (1+\sqrt {3}-x\right )^2}} \sqrt {1-x^3}} \] Output:

80*(-x^3+1)^(1/2)/(91+91*3^(1/2)-91*x)-20/91*x^2*(-x^3+1)^(1/2)-2/13*x^5*( 
-x^3+1)^(1/2)-40/91*3^(1/4)*(1/2*6^(1/2)-1/2*2^(1/2))*(1-x)*((x^2+x+1)/(1+ 
3^(1/2)-x)^2)^(1/2)*EllipticE((1-3^(1/2)-x)/(1+3^(1/2)-x),I*3^(1/2)+2*I)/( 
(1-x)/(1+3^(1/2)-x)^2)^(1/2)/(-x^3+1)^(1/2)+80/273*2^(1/2)*(1-x)*((x^2+x+1 
)/(1+3^(1/2)-x)^2)^(1/2)*EllipticF((1-3^(1/2)-x)/(1+3^(1/2)-x),I*3^(1/2)+2 
*I)*3^(3/4)/((1-x)/(1+3^(1/2)-x)^2)^(1/2)/(-x^3+1)^(1/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.02 (sec) , antiderivative size = 42, normalized size of antiderivative = 0.14 \[ \int \frac {x^7}{\sqrt {1-x^3}} \, dx=-\frac {2}{91} x^2 \left (\sqrt {1-x^3} \left (10+7 x^3\right )-10 \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {2}{3},\frac {5}{3},x^3\right )\right ) \] Input:

Integrate[x^7/Sqrt[1 - x^3],x]
 

Output:

(-2*x^2*(Sqrt[1 - x^3]*(10 + 7*x^3) - 10*Hypergeometric2F1[1/2, 2/3, 5/3, 
x^3]))/91
 

Rubi [A] (verified)

Time = 0.39 (sec) , antiderivative size = 313, normalized size of antiderivative = 1.06, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {843, 843, 832, 759, 2416}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^7}{\sqrt {1-x^3}} \, dx\)

\(\Big \downarrow \) 843

\(\displaystyle \frac {10}{13} \int \frac {x^4}{\sqrt {1-x^3}}dx-\frac {2}{13} x^5 \sqrt {1-x^3}\)

\(\Big \downarrow \) 843

\(\displaystyle \frac {10}{13} \left (\frac {4}{7} \int \frac {x}{\sqrt {1-x^3}}dx-\frac {2}{7} x^2 \sqrt {1-x^3}\right )-\frac {2}{13} x^5 \sqrt {1-x^3}\)

\(\Big \downarrow \) 832

\(\displaystyle \frac {10}{13} \left (\frac {4}{7} \left (\left (1-\sqrt {3}\right ) \int \frac {1}{\sqrt {1-x^3}}dx-\int \frac {-x-\sqrt {3}+1}{\sqrt {1-x^3}}dx\right )-\frac {2}{7} x^2 \sqrt {1-x^3}\right )-\frac {2}{13} x^5 \sqrt {1-x^3}\)

\(\Big \downarrow \) 759

\(\displaystyle \frac {10}{13} \left (\frac {4}{7} \left (-\int \frac {-x-\sqrt {3}+1}{\sqrt {1-x^3}}dx-\frac {2 \left (1-\sqrt {3}\right ) \sqrt {2+\sqrt {3}} (1-x) \sqrt {\frac {x^2+x+1}{\left (-x+\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {-x-\sqrt {3}+1}{-x+\sqrt {3}+1}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {\frac {1-x}{\left (-x+\sqrt {3}+1\right )^2}} \sqrt {1-x^3}}\right )-\frac {2}{7} x^2 \sqrt {1-x^3}\right )-\frac {2}{13} x^5 \sqrt {1-x^3}\)

\(\Big \downarrow \) 2416

\(\displaystyle \frac {10}{13} \left (\frac {4}{7} \left (-\frac {2 \left (1-\sqrt {3}\right ) \sqrt {2+\sqrt {3}} (1-x) \sqrt {\frac {x^2+x+1}{\left (-x+\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {-x-\sqrt {3}+1}{-x+\sqrt {3}+1}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {\frac {1-x}{\left (-x+\sqrt {3}+1\right )^2}} \sqrt {1-x^3}}-\frac {\sqrt [4]{3} \sqrt {2-\sqrt {3}} (1-x) \sqrt {\frac {x^2+x+1}{\left (-x+\sqrt {3}+1\right )^2}} E\left (\arcsin \left (\frac {-x-\sqrt {3}+1}{-x+\sqrt {3}+1}\right )|-7-4 \sqrt {3}\right )}{\sqrt {\frac {1-x}{\left (-x+\sqrt {3}+1\right )^2}} \sqrt {1-x^3}}+\frac {2 \sqrt {1-x^3}}{-x+\sqrt {3}+1}\right )-\frac {2}{7} x^2 \sqrt {1-x^3}\right )-\frac {2}{13} x^5 \sqrt {1-x^3}\)

Input:

Int[x^7/Sqrt[1 - x^3],x]
 

Output:

(-2*x^5*Sqrt[1 - x^3])/13 + (10*((-2*x^2*Sqrt[1 - x^3])/7 + (4*((2*Sqrt[1 
- x^3])/(1 + Sqrt[3] - x) - (3^(1/4)*Sqrt[2 - Sqrt[3]]*(1 - x)*Sqrt[(1 + x 
 + x^2)/(1 + Sqrt[3] - x)^2]*EllipticE[ArcSin[(1 - Sqrt[3] - x)/(1 + Sqrt[ 
3] - x)], -7 - 4*Sqrt[3]])/(Sqrt[(1 - x)/(1 + Sqrt[3] - x)^2]*Sqrt[1 - x^3 
]) - (2*(1 - Sqrt[3])*Sqrt[2 + Sqrt[3]]*(1 - x)*Sqrt[(1 + x + x^2)/(1 + Sq 
rt[3] - x)^2]*EllipticF[ArcSin[(1 - Sqrt[3] - x)/(1 + Sqrt[3] - x)], -7 - 
4*Sqrt[3]])/(3^(1/4)*Sqrt[(1 - x)/(1 + Sqrt[3] - x)^2]*Sqrt[1 - x^3])))/7) 
)/13
 

Defintions of rubi rules used

rule 759
Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], 
s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt[2 + Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s 
*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[s* 
((s + r*x)/((1 + Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 - Sqrt[3])*s 
+ r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x] & 
& PosQ[a]
 

rule 832
Int[(x_)/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3] 
], s = Denom[Rt[b/a, 3]]}, Simp[(-(1 - Sqrt[3]))*(s/r)   Int[1/Sqrt[a + b*x 
^3], x], x] + Simp[1/r   Int[((1 - Sqrt[3])*s + r*x)/Sqrt[a + b*x^3], x], x 
]] /; FreeQ[{a, b}, x] && PosQ[a]
 

rule 843
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(n 
 - 1)*(c*x)^(m - n + 1)*((a + b*x^n)^(p + 1)/(b*(m + n*p + 1))), x] - Simp[ 
a*c^n*((m - n + 1)/(b*(m + n*p + 1)))   Int[(c*x)^(m - n)*(a + b*x^n)^p, x] 
, x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n* 
p + 1, 0] && IntBinomialQ[a, b, c, n, m, p, x]
 

rule 2416
Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = N 
umer[Simplify[(1 - Sqrt[3])*(d/c)]], s = Denom[Simplify[(1 - Sqrt[3])*(d/c) 
]]}, Simp[2*d*s^3*(Sqrt[a + b*x^3]/(a*r^2*((1 + Sqrt[3])*s + r*x))), x] - S 
imp[3^(1/4)*Sqrt[2 - Sqrt[3]]*d*s*(s + r*x)*(Sqrt[(s^2 - r*s*x + r^2*x^2)/( 
(1 + Sqrt[3])*s + r*x)^2]/(r^2*Sqrt[a + b*x^3]*Sqrt[s*((s + r*x)/((1 + Sqrt 
[3])*s + r*x)^2)]))*EllipticE[ArcSin[((1 - Sqrt[3])*s + r*x)/((1 + Sqrt[3]) 
*s + r*x)], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b, c, d}, x] && PosQ[a] && Eq 
Q[b*c^3 - 2*(5 - 3*Sqrt[3])*a*d^3, 0]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4.

Time = 0.67 (sec) , antiderivative size = 15, normalized size of antiderivative = 0.05

method result size
meijerg \(\frac {x^{8} \operatorname {hypergeom}\left (\left [\frac {1}{2}, \frac {8}{3}\right ], \left [\frac {11}{3}\right ], x^{3}\right )}{8}\) \(15\)
risch \(\frac {2 x^{2} \left (7 x^{3}+10\right ) \left (x^{3}-1\right )}{91 \sqrt {-x^{3}+1}}-\frac {80 i \sqrt {3}\, \sqrt {i \left (x +\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \sqrt {\frac {-1+x}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \sqrt {-i \left (x +\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \left (\left (-\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) \operatorname {EllipticE}\left (\frac {\sqrt {3}\, \sqrt {i \left (x +\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \sqrt {\frac {i \sqrt {3}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )+\operatorname {EllipticF}\left (\frac {\sqrt {3}\, \sqrt {i \left (x +\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \sqrt {\frac {i \sqrt {3}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )\right )}{273 \sqrt {-x^{3}+1}}\) \(185\)
default \(-\frac {2 x^{5} \sqrt {-x^{3}+1}}{13}-\frac {20 x^{2} \sqrt {-x^{3}+1}}{91}-\frac {80 i \sqrt {3}\, \sqrt {i \left (x +\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \sqrt {\frac {-1+x}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \sqrt {-i \left (x +\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \left (\left (-\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) \operatorname {EllipticE}\left (\frac {\sqrt {3}\, \sqrt {i \left (x +\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \sqrt {\frac {i \sqrt {3}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )+\operatorname {EllipticF}\left (\frac {\sqrt {3}\, \sqrt {i \left (x +\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \sqrt {\frac {i \sqrt {3}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )\right )}{273 \sqrt {-x^{3}+1}}\) \(187\)
elliptic \(-\frac {2 x^{5} \sqrt {-x^{3}+1}}{13}-\frac {20 x^{2} \sqrt {-x^{3}+1}}{91}-\frac {80 i \sqrt {3}\, \sqrt {i \left (x +\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \sqrt {\frac {-1+x}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \sqrt {-i \left (x +\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \left (\left (-\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) \operatorname {EllipticE}\left (\frac {\sqrt {3}\, \sqrt {i \left (x +\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \sqrt {\frac {i \sqrt {3}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )+\operatorname {EllipticF}\left (\frac {\sqrt {3}\, \sqrt {i \left (x +\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \sqrt {\frac {i \sqrt {3}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )\right )}{273 \sqrt {-x^{3}+1}}\) \(187\)

Input:

int(x^7/(-x^3+1)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

1/8*x^8*hypergeom([1/2,8/3],[11/3],x^3)
 

Fricas [A] (verification not implemented)

Time = 0.07 (sec) , antiderivative size = 32, normalized size of antiderivative = 0.11 \[ \int \frac {x^7}{\sqrt {1-x^3}} \, dx=-\frac {2}{91} \, {\left (7 \, x^{5} + 10 \, x^{2}\right )} \sqrt {-x^{3} + 1} + \frac {80}{91} i \, {\rm weierstrassZeta}\left (0, 4, {\rm weierstrassPInverse}\left (0, 4, x\right )\right ) \] Input:

integrate(x^7/(-x^3+1)^(1/2),x, algorithm="fricas")
 

Output:

-2/91*(7*x^5 + 10*x^2)*sqrt(-x^3 + 1) + 80/91*I*weierstrassZeta(0, 4, weie 
rstrassPInverse(0, 4, x))
 

Sympy [A] (verification not implemented)

Time = 0.51 (sec) , antiderivative size = 31, normalized size of antiderivative = 0.11 \[ \int \frac {x^7}{\sqrt {1-x^3}} \, dx=\frac {x^{8} \Gamma \left (\frac {8}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, \frac {8}{3} \\ \frac {11}{3} \end {matrix}\middle | {x^{3} e^{2 i \pi }} \right )}}{3 \Gamma \left (\frac {11}{3}\right )} \] Input:

integrate(x**7/(-x**3+1)**(1/2),x)
 

Output:

x**8*gamma(8/3)*hyper((1/2, 8/3), (11/3,), x**3*exp_polar(2*I*pi))/(3*gamm 
a(11/3))
 

Maxima [F]

\[ \int \frac {x^7}{\sqrt {1-x^3}} \, dx=\int { \frac {x^{7}}{\sqrt {-x^{3} + 1}} \,d x } \] Input:

integrate(x^7/(-x^3+1)^(1/2),x, algorithm="maxima")
 

Output:

integrate(x^7/sqrt(-x^3 + 1), x)
 

Giac [F]

\[ \int \frac {x^7}{\sqrt {1-x^3}} \, dx=\int { \frac {x^{7}}{\sqrt {-x^{3} + 1}} \,d x } \] Input:

integrate(x^7/(-x^3+1)^(1/2),x, algorithm="giac")
 

Output:

integrate(x^7/sqrt(-x^3 + 1), x)
 

Mupad [B] (verification not implemented)

Time = 0.05 (sec) , antiderivative size = 260, normalized size of antiderivative = 0.88 \[ \int \frac {x^7}{\sqrt {1-x^3}} \, dx=-\frac {20\,x^2\,\sqrt {1-x^3}}{91}-\frac {2\,x^5\,\sqrt {1-x^3}}{13}-\frac {80\,\left (\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\mathrm {F}\left (\mathrm {asin}\left (\sqrt {-\frac {x-1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\right )\middle |-\frac {\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}\right )-\left (-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\mathrm {E}\left (\mathrm {asin}\left (\sqrt {-\frac {x-1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\right )\middle |-\frac {\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}\right )\right )\,\left (\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\sqrt {x^3-1}\,\sqrt {-\frac {x+\frac {1}{2}-\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {\frac {x+\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {-\frac {x-1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}}{91\,\sqrt {1-x^3}\,\sqrt {x^3+\left (-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )-1\right )\,x+\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}} \] Input:

int(x^7/(1 - x^3)^(1/2),x)
 

Output:

- (20*x^2*(1 - x^3)^(1/2))/91 - (2*x^5*(1 - x^3)^(1/2))/13 - (80*(((3^(1/2 
)*1i)/2 - 1/2)*ellipticF(asin((-(x - 1)/((3^(1/2)*1i)/2 + 3/2))^(1/2)), -( 
(3^(1/2)*1i)/2 + 3/2)/((3^(1/2)*1i)/2 - 3/2)) - ((3^(1/2)*1i)/2 - 3/2)*ell 
ipticE(asin((-(x - 1)/((3^(1/2)*1i)/2 + 3/2))^(1/2)), -((3^(1/2)*1i)/2 + 3 
/2)/((3^(1/2)*1i)/2 - 3/2)))*((3^(1/2)*1i)/2 + 3/2)*(x^3 - 1)^(1/2)*(-(x - 
 (3^(1/2)*1i)/2 + 1/2)/((3^(1/2)*1i)/2 - 3/2))^(1/2)*((x + (3^(1/2)*1i)/2 
+ 1/2)/((3^(1/2)*1i)/2 + 3/2))^(1/2)*(-(x - 1)/((3^(1/2)*1i)/2 + 3/2))^(1/ 
2))/(91*(1 - x^3)^(1/2)*(((3^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2) - x 
*(((3^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2) + 1) + x^3)^(1/2))
 

Reduce [F]

\[ \int \frac {x^7}{\sqrt {1-x^3}} \, dx=-\frac {2 \sqrt {-x^{3}+1}\, x^{5}}{13}-\frac {20 \sqrt {-x^{3}+1}\, x^{2}}{91}-\frac {40 \left (\int \frac {\sqrt {-x^{3}+1}\, x}{x^{3}-1}d x \right )}{91} \] Input:

int(x^7/(-x^3+1)^(1/2),x)
 

Output:

(2*( - 7*sqrt( - x**3 + 1)*x**5 - 10*sqrt( - x**3 + 1)*x**2 - 20*int((sqrt 
( - x**3 + 1)*x)/(x**3 - 1),x)))/91