\(\int \frac {x^7}{\sqrt {-1-x^3}} \, dx\) [299]

Optimal result
Mathematica [C] (verified)
Rubi [A] (warning: unable to verify)
Maple [C] (verified)
Fricas [A] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [F]
Giac [F]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 15, antiderivative size = 282 \[ \int \frac {x^7}{\sqrt {-1-x^3}} \, dx=\frac {20}{91} x^2 \sqrt {-1-x^3}-\frac {2}{13} x^5 \sqrt {-1-x^3}-\frac {80 \sqrt {-1-x^3}}{91 \left (1-\sqrt {3}+x\right )}+\frac {40 \sqrt [4]{3} \sqrt {2+\sqrt {3}} (1+x) \sqrt {\frac {1-x+x^2}{\left (1-\sqrt {3}+x\right )^2}} E\left (\arcsin \left (\frac {1+\sqrt {3}+x}{1-\sqrt {3}+x}\right )|-7+4 \sqrt {3}\right )}{91 \sqrt {-\frac {1+x}{\left (1-\sqrt {3}+x\right )^2}} \sqrt {-1-x^3}}-\frac {80 \sqrt {2} (1+x) \sqrt {\frac {1-x+x^2}{\left (1-\sqrt {3}+x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {1+\sqrt {3}+x}{1-\sqrt {3}+x}\right ),-7+4 \sqrt {3}\right )}{91 \sqrt [4]{3} \sqrt {-\frac {1+x}{\left (1-\sqrt {3}+x\right )^2}} \sqrt {-1-x^3}} \] Output:

20/91*x^2*(-x^3-1)^(1/2)-2/13*x^5*(-x^3-1)^(1/2)-80*(-x^3-1)^(1/2)/(91-91* 
3^(1/2)+91*x)+40/91*3^(1/4)*(1/2*6^(1/2)+1/2*2^(1/2))*(1+x)*((x^2-x+1)/(1+ 
x-3^(1/2))^2)^(1/2)*EllipticE((1+x+3^(1/2))/(1+x-3^(1/2)),2*I-I*3^(1/2))/( 
-(1+x)/(1+x-3^(1/2))^2)^(1/2)/(-x^3-1)^(1/2)-80/273*2^(1/2)*(1+x)*((x^2-x+ 
1)/(1+x-3^(1/2))^2)^(1/2)*EllipticF((1+x+3^(1/2))/(1+x-3^(1/2)),2*I-I*3^(1 
/2))*3^(3/4)/(-(1+x)/(1+x-3^(1/2))^2)^(1/2)/(-x^3-1)^(1/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.02 (sec) , antiderivative size = 56, normalized size of antiderivative = 0.20 \[ \int \frac {x^7}{\sqrt {-1-x^3}} \, dx=\frac {2 x^2 \left (-10-3 x^3+7 x^6+10 \sqrt {1+x^3} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {2}{3},\frac {5}{3},-x^3\right )\right )}{91 \sqrt {-1-x^3}} \] Input:

Integrate[x^7/Sqrt[-1 - x^3],x]
 

Output:

(2*x^2*(-10 - 3*x^3 + 7*x^6 + 10*Sqrt[1 + x^3]*Hypergeometric2F1[1/2, 2/3, 
 5/3, -x^3]))/(91*Sqrt[-1 - x^3])
 

Rubi [A] (warning: unable to verify)

Time = 0.64 (sec) , antiderivative size = 300, normalized size of antiderivative = 1.06, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {843, 843, 833, 760, 2418}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^7}{\sqrt {-x^3-1}} \, dx\)

\(\Big \downarrow \) 843

\(\displaystyle -\frac {10}{13} \int \frac {x^4}{\sqrt {-x^3-1}}dx-\frac {2}{13} \sqrt {-x^3-1} x^5\)

\(\Big \downarrow \) 843

\(\displaystyle -\frac {10}{13} \left (-\frac {4}{7} \int \frac {x}{\sqrt {-x^3-1}}dx-\frac {2}{7} \sqrt {-x^3-1} x^2\right )-\frac {2}{13} \sqrt {-x^3-1} x^5\)

\(\Big \downarrow \) 833

\(\displaystyle -\frac {10}{13} \left (-\frac {4}{7} \left (\int \frac {x+\sqrt {3}+1}{\sqrt {-x^3-1}}dx-\left (1+\sqrt {3}\right ) \int \frac {1}{\sqrt {-x^3-1}}dx\right )-\frac {2}{7} \sqrt {-x^3-1} x^2\right )-\frac {2}{13} \sqrt {-x^3-1} x^5\)

\(\Big \downarrow \) 760

\(\displaystyle -\frac {10}{13} \left (-\frac {4}{7} \left (\int \frac {x+\sqrt {3}+1}{\sqrt {-x^3-1}}dx-\frac {2 \sqrt {2-\sqrt {3}} \left (1+\sqrt {3}\right ) (x+1) \sqrt {\frac {x^2-x+1}{\left (x-\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {x+\sqrt {3}+1}{x-\sqrt {3}+1}\right ),-7+4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {-\frac {x+1}{\left (x-\sqrt {3}+1\right )^2}} \sqrt {-x^3-1}}\right )-\frac {2}{7} \sqrt {-x^3-1} x^2\right )-\frac {2}{13} \sqrt {-x^3-1} x^5\)

\(\Big \downarrow \) 2418

\(\displaystyle -\frac {10}{13} \left (-\frac {4}{7} \left (-\frac {2 \sqrt {2-\sqrt {3}} \left (1+\sqrt {3}\right ) (x+1) \sqrt {\frac {x^2-x+1}{\left (x-\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {x+\sqrt {3}+1}{x-\sqrt {3}+1}\right ),-7+4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {-\frac {x+1}{\left (x-\sqrt {3}+1\right )^2}} \sqrt {-x^3-1}}+\frac {\sqrt [4]{3} \sqrt {2+\sqrt {3}} (x+1) \sqrt {\frac {x^2-x+1}{\left (x-\sqrt {3}+1\right )^2}} E\left (\arcsin \left (\frac {x+\sqrt {3}+1}{x-\sqrt {3}+1}\right )|-7+4 \sqrt {3}\right )}{\sqrt {-\frac {x+1}{\left (x-\sqrt {3}+1\right )^2}} \sqrt {-x^3-1}}-\frac {2 \sqrt {-x^3-1}}{x-\sqrt {3}+1}\right )-\frac {2}{7} \sqrt {-x^3-1} x^2\right )-\frac {2}{13} \sqrt {-x^3-1} x^5\)

Input:

Int[x^7/Sqrt[-1 - x^3],x]
 

Output:

(-2*x^5*Sqrt[-1 - x^3])/13 - (10*((-2*x^2*Sqrt[-1 - x^3])/7 - (4*((-2*Sqrt 
[-1 - x^3])/(1 - Sqrt[3] + x) + (3^(1/4)*Sqrt[2 + Sqrt[3]]*(1 + x)*Sqrt[(1 
 - x + x^2)/(1 - Sqrt[3] + x)^2]*EllipticE[ArcSin[(1 + Sqrt[3] + x)/(1 - S 
qrt[3] + x)], -7 + 4*Sqrt[3]])/(Sqrt[-((1 + x)/(1 - Sqrt[3] + x)^2)]*Sqrt[ 
-1 - x^3]) - (2*Sqrt[2 - Sqrt[3]]*(1 + Sqrt[3])*(1 + x)*Sqrt[(1 - x + x^2) 
/(1 - Sqrt[3] + x)^2]*EllipticF[ArcSin[(1 + Sqrt[3] + x)/(1 - Sqrt[3] + x) 
], -7 + 4*Sqrt[3]])/(3^(1/4)*Sqrt[-((1 + x)/(1 - Sqrt[3] + x)^2)]*Sqrt[-1 
- x^3])))/7))/13
 

Defintions of rubi rules used

rule 760
Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], 
s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt[2 - Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s 
*x + r^2*x^2)/((1 - Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[(- 
s)*((s + r*x)/((1 - Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 + Sqrt[3]) 
*s + r*x)/((1 - Sqrt[3])*s + r*x)], -7 + 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x 
] && NegQ[a]
 

rule 833
Int[(x_)/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3] 
], s = Denom[Rt[b/a, 3]]}, Simp[(-(1 + Sqrt[3]))*(s/r)   Int[1/Sqrt[a + b*x 
^3], x], x] + Simp[1/r   Int[((1 + Sqrt[3])*s + r*x)/Sqrt[a + b*x^3], x], x 
]] /; FreeQ[{a, b}, x] && NegQ[a]
 

rule 843
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(n 
 - 1)*(c*x)^(m - n + 1)*((a + b*x^n)^(p + 1)/(b*(m + n*p + 1))), x] - Simp[ 
a*c^n*((m - n + 1)/(b*(m + n*p + 1)))   Int[(c*x)^(m - n)*(a + b*x^n)^p, x] 
, x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n* 
p + 1, 0] && IntBinomialQ[a, b, c, n, m, p, x]
 

rule 2418
Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = N 
umer[Simplify[(1 + Sqrt[3])*(d/c)]], s = Denom[Simplify[(1 + Sqrt[3])*(d/c) 
]]}, Simp[2*d*s^3*(Sqrt[a + b*x^3]/(a*r^2*((1 - Sqrt[3])*s + r*x))), x] + S 
imp[3^(1/4)*Sqrt[2 + Sqrt[3]]*d*s*(s + r*x)*(Sqrt[(s^2 - r*s*x + r^2*x^2)/( 
(1 - Sqrt[3])*s + r*x)^2]/(r^2*Sqrt[a + b*x^3]*Sqrt[(-s)*((s + r*x)/((1 - S 
qrt[3])*s + r*x)^2)]))*EllipticE[ArcSin[((1 + Sqrt[3])*s + r*x)/((1 - Sqrt[ 
3])*s + r*x)], -7 + 4*Sqrt[3]], x]] /; FreeQ[{a, b, c, d}, x] && NegQ[a] && 
 EqQ[b*c^3 - 2*(5 + 3*Sqrt[3])*a*d^3, 0]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4.

Time = 0.65 (sec) , antiderivative size = 18, normalized size of antiderivative = 0.06

method result size
meijerg \(-\frac {i x^{8} \operatorname {hypergeom}\left (\left [\frac {1}{2}, \frac {8}{3}\right ], \left [\frac {11}{3}\right ], -x^{3}\right )}{8}\) \(18\)
risch \(\frac {2 x^{2} \left (7 x^{3}-10\right ) \left (x^{3}+1\right )}{91 \sqrt {-x^{3}-1}}-\frac {80 i \sqrt {3}\, \sqrt {i \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \sqrt {\frac {1+x}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \sqrt {-i \left (x -\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \left (\left (\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) \operatorname {EllipticE}\left (\frac {\sqrt {3}\, \sqrt {i \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \sqrt {\frac {i \sqrt {3}}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )-\operatorname {EllipticF}\left (\frac {\sqrt {3}\, \sqrt {i \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \sqrt {\frac {i \sqrt {3}}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )\right )}{273 \sqrt {-x^{3}-1}}\) \(187\)
default \(-\frac {2 x^{5} \sqrt {-x^{3}-1}}{13}+\frac {20 x^{2} \sqrt {-x^{3}-1}}{91}-\frac {80 i \sqrt {3}\, \sqrt {i \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \sqrt {\frac {1+x}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \sqrt {-i \left (x -\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \left (\left (\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) \operatorname {EllipticE}\left (\frac {\sqrt {3}\, \sqrt {i \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \sqrt {\frac {i \sqrt {3}}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )-\operatorname {EllipticF}\left (\frac {\sqrt {3}\, \sqrt {i \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \sqrt {\frac {i \sqrt {3}}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )\right )}{273 \sqrt {-x^{3}-1}}\) \(189\)
elliptic \(-\frac {2 x^{5} \sqrt {-x^{3}-1}}{13}+\frac {20 x^{2} \sqrt {-x^{3}-1}}{91}-\frac {80 i \sqrt {3}\, \sqrt {i \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \sqrt {\frac {1+x}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \sqrt {-i \left (x -\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \left (\left (\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) \operatorname {EllipticE}\left (\frac {\sqrt {3}\, \sqrt {i \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \sqrt {\frac {i \sqrt {3}}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )-\operatorname {EllipticF}\left (\frac {\sqrt {3}\, \sqrt {i \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \sqrt {\frac {i \sqrt {3}}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )\right )}{273 \sqrt {-x^{3}-1}}\) \(189\)

Input:

int(x^7/(-x^3-1)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

-1/8*I*x^8*hypergeom([1/2,8/3],[11/3],-x^3)
 

Fricas [A] (verification not implemented)

Time = 0.07 (sec) , antiderivative size = 32, normalized size of antiderivative = 0.11 \[ \int \frac {x^7}{\sqrt {-1-x^3}} \, dx=-\frac {2}{91} \, {\left (7 \, x^{5} - 10 \, x^{2}\right )} \sqrt {-x^{3} - 1} + \frac {80}{91} i \, {\rm weierstrassZeta}\left (0, -4, {\rm weierstrassPInverse}\left (0, -4, x\right )\right ) \] Input:

integrate(x^7/(-x^3-1)^(1/2),x, algorithm="fricas")
 

Output:

-2/91*(7*x^5 - 10*x^2)*sqrt(-x^3 - 1) + 80/91*I*weierstrassZeta(0, -4, wei 
erstrassPInverse(0, -4, x))
 

Sympy [A] (verification not implemented)

Time = 0.50 (sec) , antiderivative size = 32, normalized size of antiderivative = 0.11 \[ \int \frac {x^7}{\sqrt {-1-x^3}} \, dx=- \frac {i x^{8} \Gamma \left (\frac {8}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, \frac {8}{3} \\ \frac {11}{3} \end {matrix}\middle | {x^{3} e^{i \pi }} \right )}}{3 \Gamma \left (\frac {11}{3}\right )} \] Input:

integrate(x**7/(-x**3-1)**(1/2),x)
 

Output:

-I*x**8*gamma(8/3)*hyper((1/2, 8/3), (11/3,), x**3*exp_polar(I*pi))/(3*gam 
ma(11/3))
 

Maxima [F]

\[ \int \frac {x^7}{\sqrt {-1-x^3}} \, dx=\int { \frac {x^{7}}{\sqrt {-x^{3} - 1}} \,d x } \] Input:

integrate(x^7/(-x^3-1)^(1/2),x, algorithm="maxima")
 

Output:

integrate(x^7/sqrt(-x^3 - 1), x)
 

Giac [F]

\[ \int \frac {x^7}{\sqrt {-1-x^3}} \, dx=\int { \frac {x^{7}}{\sqrt {-x^{3} - 1}} \,d x } \] Input:

integrate(x^7/(-x^3-1)^(1/2),x, algorithm="giac")
 

Output:

integrate(x^7/sqrt(-x^3 - 1), x)
 

Mupad [B] (verification not implemented)

Time = 0.05 (sec) , antiderivative size = 259, normalized size of antiderivative = 0.92 \[ \int \frac {x^7}{\sqrt {-1-x^3}} \, dx=\frac {20\,x^2\,\sqrt {-x^3-1}}{91}-\frac {2\,x^5\,\sqrt {-x^3-1}}{13}-\frac {80\,\left (\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\mathrm {F}\left (\mathrm {asin}\left (\sqrt {\frac {x+1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\right )\middle |-\frac {\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}\right )-\left (-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\mathrm {E}\left (\mathrm {asin}\left (\sqrt {\frac {x+1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\right )\middle |-\frac {\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}\right )\right )\,\left (\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\sqrt {x^3+1}\,\sqrt {\frac {x-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {\frac {x+1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {\frac {\frac {1}{2}-x+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}}{91\,\sqrt {-x^3-1}\,\sqrt {x^3+\left (-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )-1\right )\,x-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}} \] Input:

int(x^7/(- x^3 - 1)^(1/2),x)
 

Output:

(20*x^2*(- x^3 - 1)^(1/2))/91 - (2*x^5*(- x^3 - 1)^(1/2))/13 - (80*(((3^(1 
/2)*1i)/2 - 1/2)*ellipticF(asin(((x + 1)/((3^(1/2)*1i)/2 + 3/2))^(1/2)), - 
((3^(1/2)*1i)/2 + 3/2)/((3^(1/2)*1i)/2 - 3/2)) - ((3^(1/2)*1i)/2 - 3/2)*el 
lipticE(asin(((x + 1)/((3^(1/2)*1i)/2 + 3/2))^(1/2)), -((3^(1/2)*1i)/2 + 3 
/2)/((3^(1/2)*1i)/2 - 3/2)))*((3^(1/2)*1i)/2 + 3/2)*(x^3 + 1)^(1/2)*((x + 
(3^(1/2)*1i)/2 - 1/2)/((3^(1/2)*1i)/2 - 3/2))^(1/2)*((x + 1)/((3^(1/2)*1i) 
/2 + 3/2))^(1/2)*(((3^(1/2)*1i)/2 - x + 1/2)/((3^(1/2)*1i)/2 + 3/2))^(1/2) 
)/(91*(- x^3 - 1)^(1/2)*(x^3 - x*(((3^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 
 1/2) + 1) - ((3^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2))^(1/2))
 

Reduce [F]

\[ \int \frac {x^7}{\sqrt {-1-x^3}} \, dx=\frac {2 i \left (-7 \sqrt {x^{3}+1}\, x^{5}+10 \sqrt {x^{3}+1}\, x^{2}-20 \left (\int \frac {\sqrt {x^{3}+1}\, x}{x^{3}+1}d x \right )\right )}{91} \] Input:

int(x^7/(-x^3-1)^(1/2),x)
 

Output:

(2*i*( - 7*sqrt(x**3 + 1)*x**5 + 10*sqrt(x**3 + 1)*x**2 - 20*int((sqrt(x** 
3 + 1)*x)/(x**3 + 1),x)))/91