\(\int \frac {\sqrt {a+b x^3}}{(c x)^{7/2}} \, dx\) [313]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [A] (verification not implemented)
Sympy [C] (verification not implemented)
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 19, antiderivative size = 234 \[ \int \frac {\sqrt {a+b x^3}}{(c x)^{7/2}} \, dx=-\frac {2 \sqrt {a+b x^3}}{5 c (c x)^{5/2}}+\frac {3^{3/4} b \sqrt {c x} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right )^2}} \operatorname {EllipticF}\left (\arccos \left (\frac {\sqrt [3]{a}+\left (1-\sqrt {3}\right ) \sqrt [3]{b} x}{\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x}\right ),\frac {1}{4} \left (2+\sqrt {3}\right )\right )}{5 \sqrt [3]{a} c^4 \sqrt {\frac {\sqrt [3]{b} x \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}} \] Output:

-2/5*(b*x^3+a)^(1/2)/c/(c*x)^(5/2)+1/5*3^(3/4)*b*(c*x)^(1/2)*(a^(1/3)+b^(1 
/3)*x)*((a^(2/3)-a^(1/3)*b^(1/3)*x+b^(2/3)*x^2)/(a^(1/3)+(1+3^(1/2))*b^(1/ 
3)*x)^2)^(1/2)*InverseJacobiAM(arccos((a^(1/3)+(1-3^(1/2))*b^(1/3)*x)/(a^( 
1/3)+(1+3^(1/2))*b^(1/3)*x)),1/4*6^(1/2)+1/4*2^(1/2))/a^(1/3)/c^4/(b^(1/3) 
*x*(a^(1/3)+b^(1/3)*x)/(a^(1/3)+(1+3^(1/2))*b^(1/3)*x)^2)^(1/2)/(b*x^3+a)^ 
(1/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.02 (sec) , antiderivative size = 56, normalized size of antiderivative = 0.24 \[ \int \frac {\sqrt {a+b x^3}}{(c x)^{7/2}} \, dx=-\frac {2 x \sqrt {a+b x^3} \operatorname {Hypergeometric2F1}\left (-\frac {5}{6},-\frac {1}{2},\frac {1}{6},-\frac {b x^3}{a}\right )}{5 (c x)^{7/2} \sqrt {1+\frac {b x^3}{a}}} \] Input:

Integrate[Sqrt[a + b*x^3]/(c*x)^(7/2),x]
 

Output:

(-2*x*Sqrt[a + b*x^3]*Hypergeometric2F1[-5/6, -1/2, 1/6, -((b*x^3)/a)])/(5 
*(c*x)^(7/2)*Sqrt[1 + (b*x^3)/a])
 

Rubi [A] (verified)

Time = 0.52 (sec) , antiderivative size = 263, normalized size of antiderivative = 1.12, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.158, Rules used = {809, 851, 766}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {a+b x^3}}{(c x)^{7/2}} \, dx\)

\(\Big \downarrow \) 809

\(\displaystyle \frac {3 b \int \frac {1}{\sqrt {c x} \sqrt {b x^3+a}}dx}{5 c^3}-\frac {2 \sqrt {a+b x^3}}{5 c (c x)^{5/2}}\)

\(\Big \downarrow \) 851

\(\displaystyle \frac {6 b \int \frac {1}{\sqrt {b x^3+a}}d\sqrt {c x}}{5 c^4}-\frac {2 \sqrt {a+b x^3}}{5 c (c x)^{5/2}}\)

\(\Big \downarrow \) 766

\(\displaystyle \frac {3^{3/4} b \sqrt {c x} \left (\sqrt [3]{a} c+\sqrt [3]{b} c x\right ) \sqrt {\frac {a^{2/3} c^2-\sqrt [3]{a} \sqrt [3]{b} c^2 x+b^{2/3} c^2 x^2}{\left (\sqrt [3]{a} c+\left (1+\sqrt {3}\right ) \sqrt [3]{b} c x\right )^2}} \operatorname {EllipticF}\left (\arccos \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{b} x c+\sqrt [3]{a} c}{\left (1+\sqrt {3}\right ) \sqrt [3]{b} x c+\sqrt [3]{a} c}\right ),\frac {1}{4} \left (2+\sqrt {3}\right )\right )}{5 \sqrt [3]{a} c^5 \sqrt {a+b x^3} \sqrt {\frac {\sqrt [3]{b} c x \left (\sqrt [3]{a} c+\sqrt [3]{b} c x\right )}{\left (\sqrt [3]{a} c+\left (1+\sqrt {3}\right ) \sqrt [3]{b} c x\right )^2}}}-\frac {2 \sqrt {a+b x^3}}{5 c (c x)^{5/2}}\)

Input:

Int[Sqrt[a + b*x^3]/(c*x)^(7/2),x]
 

Output:

(-2*Sqrt[a + b*x^3])/(5*c*(c*x)^(5/2)) + (3^(3/4)*b*Sqrt[c*x]*(a^(1/3)*c + 
 b^(1/3)*c*x)*Sqrt[(a^(2/3)*c^2 - a^(1/3)*b^(1/3)*c^2*x + b^(2/3)*c^2*x^2) 
/(a^(1/3)*c + (1 + Sqrt[3])*b^(1/3)*c*x)^2]*EllipticF[ArcCos[(a^(1/3)*c + 
(1 - Sqrt[3])*b^(1/3)*c*x)/(a^(1/3)*c + (1 + Sqrt[3])*b^(1/3)*c*x)], (2 + 
Sqrt[3])/4])/(5*a^(1/3)*c^5*Sqrt[(b^(1/3)*c*x*(a^(1/3)*c + b^(1/3)*c*x))/( 
a^(1/3)*c + (1 + Sqrt[3])*b^(1/3)*c*x)^2]*Sqrt[a + b*x^3])
 

Defintions of rubi rules used

rule 766
Int[1/Sqrt[(a_) + (b_.)*(x_)^6], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], 
s = Denom[Rt[b/a, 3]]}, Simp[x*(s + r*x^2)*(Sqrt[(s^2 - r*s*x^2 + r^2*x^4)/ 
(s + (1 + Sqrt[3])*r*x^2)^2]/(2*3^(1/4)*s*Sqrt[a + b*x^6]*Sqrt[r*x^2*((s + 
r*x^2)/(s + (1 + Sqrt[3])*r*x^2)^2)]))*EllipticF[ArcCos[(s + (1 - Sqrt[3])* 
r*x^2)/(s + (1 + Sqrt[3])*r*x^2)], (2 + Sqrt[3])/4], x]] /; FreeQ[{a, b}, x 
]
 

rule 809
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c* 
x)^(m + 1)*((a + b*x^n)^p/(c*(m + 1))), x] - Simp[b*n*(p/(c^n*(m + 1)))   I 
nt[(c*x)^(m + n)*(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b, c}, x] && IGtQ 
[n, 0] && GtQ[p, 0] && LtQ[m, -1] &&  !ILtQ[(m + n*p + n + 1)/n, 0] && IntB 
inomialQ[a, b, c, n, m, p, x]
 

rule 851
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = 
 Denominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^ 
n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && 
FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]
 
Maple [C] (verified)

Result contains complex when optimal does not.

Time = 0.85 (sec) , antiderivative size = 726, normalized size of antiderivative = 3.10

method result size
risch \(-\frac {2 \sqrt {b \,x^{3}+a}}{5 x^{2} c^{3} \sqrt {c x}}+\frac {6 b^{2} \left (\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {\frac {\left (-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) x}{\left (-\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \left (x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}\right )}}\, {\left (x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}\right )}^{2} \sqrt {\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}} \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}{b \left (-\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \left (x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}\right )}}\, \sqrt {\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}} \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}{b \left (-\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \left (x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}\right )}}\, \operatorname {EllipticF}\left (\sqrt {\frac {\left (-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) x}{\left (-\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \left (x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}\right )}}, \sqrt {\frac {\left (\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \left (\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}{\left (\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \left (\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}}\right ) \sqrt {c x \left (b \,x^{3}+a \right )}}{5 \left (-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \left (-a \,b^{2}\right )^{\frac {1}{3}} \sqrt {b c x \left (x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}\right ) \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}\, c^{3} \sqrt {c x}\, \sqrt {b \,x^{3}+a}}\) \(726\)
elliptic \(\frac {\sqrt {c x \left (b \,x^{3}+a \right )}\, \left (-\frac {2 \sqrt {b c \,x^{4}+a c x}}{5 c^{4} x^{3}}+\frac {6 b^{2} \left (\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {\frac {\left (-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) x}{\left (-\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \left (x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}\right )}}\, {\left (x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}\right )}^{2} \sqrt {\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}} \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}{b \left (-\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \left (x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}\right )}}\, \sqrt {\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}} \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}{b \left (-\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \left (x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}\right )}}\, \operatorname {EllipticF}\left (\sqrt {\frac {\left (-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) x}{\left (-\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \left (x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}\right )}}, \sqrt {\frac {\left (\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \left (\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}{\left (\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \left (\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}}\right )}{5 c^{3} \left (-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \left (-a \,b^{2}\right )^{\frac {1}{3}} \sqrt {b c x \left (x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}\right ) \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}}\right )}{\sqrt {c x}\, \sqrt {b \,x^{3}+a}}\) \(726\)
default \(\text {Expression too large to display}\) \(1801\)

Input:

int((b*x^3+a)^(1/2)/(c*x)^(7/2),x,method=_RETURNVERBOSE)
 

Output:

-2/5*(b*x^3+a)^(1/2)/x^2/c^3/(c*x)^(1/2)+6/5*b^2*(1/2/b*(-a*b^2)^(1/3)-1/2 
*I*3^(1/2)/b*(-a*b^2)^(1/3))*((-3/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b 
^2)^(1/3))*x/(-1/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))/(x-1/b 
*(-a*b^2)^(1/3)))^(1/2)*(x-1/b*(-a*b^2)^(1/3))^2*(1/b*(-a*b^2)^(1/3)*(x+1/ 
2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))/(-1/2/b*(-a*b^2)^(1/3)- 
1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))/(x-1/b*(-a*b^2)^(1/3)))^(1/2)*(1/b*(-a*b^2 
)^(1/3)*(x+1/2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))/(-1/2/b*(- 
a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))/(x-1/b*(-a*b^2)^(1/3)))^(1/2) 
/(-3/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))/(-a*b^2)^(1/3)/(b* 
c*x*(x-1/b*(-a*b^2)^(1/3))*(x+1/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2 
)^(1/3))*(x+1/2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2)/b*(-a*b^2)^(1/3)))^(1/2)*El 
lipticF(((-3/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*x/(-1/2/b* 
(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))/(x-1/b*(-a*b^2)^(1/3)))^(1/ 
2),((3/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*(1/2/b*(-a*b^2)^ 
(1/3)-1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))/(1/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/ 
b*(-a*b^2)^(1/3))/(3/2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2)/b*(-a*b^2)^(1/3)))^( 
1/2))/c^3*(c*x*(b*x^3+a))^(1/2)/(c*x)^(1/2)/(b*x^3+a)^(1/2)
 

Fricas [A] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 50, normalized size of antiderivative = 0.21 \[ \int \frac {\sqrt {a+b x^3}}{(c x)^{7/2}} \, dx=-\frac {2 \, {\left (3 \, \sqrt {a c} b x^{3} {\rm weierstrassPInverse}\left (0, -\frac {4 \, b}{a}, \frac {1}{x}\right ) + \sqrt {b x^{3} + a} \sqrt {c x} a\right )}}{5 \, a c^{4} x^{3}} \] Input:

integrate((b*x^3+a)^(1/2)/(c*x)^(7/2),x, algorithm="fricas")
 

Output:

-2/5*(3*sqrt(a*c)*b*x^3*weierstrassPInverse(0, -4*b/a, 1/x) + sqrt(b*x^3 + 
 a)*sqrt(c*x)*a)/(a*c^4*x^3)
 

Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 5.04 (sec) , antiderivative size = 49, normalized size of antiderivative = 0.21 \[ \int \frac {\sqrt {a+b x^3}}{(c x)^{7/2}} \, dx=\frac {\sqrt {a} \Gamma \left (- \frac {5}{6}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {5}{6}, - \frac {1}{2} \\ \frac {1}{6} \end {matrix}\middle | {\frac {b x^{3} e^{i \pi }}{a}} \right )}}{3 c^{\frac {7}{2}} x^{\frac {5}{2}} \Gamma \left (\frac {1}{6}\right )} \] Input:

integrate((b*x**3+a)**(1/2)/(c*x)**(7/2),x)
 

Output:

sqrt(a)*gamma(-5/6)*hyper((-5/6, -1/2), (1/6,), b*x**3*exp_polar(I*pi)/a)/ 
(3*c**(7/2)*x**(5/2)*gamma(1/6))
 

Maxima [F]

\[ \int \frac {\sqrt {a+b x^3}}{(c x)^{7/2}} \, dx=\int { \frac {\sqrt {b x^{3} + a}}{\left (c x\right )^{\frac {7}{2}}} \,d x } \] Input:

integrate((b*x^3+a)^(1/2)/(c*x)^(7/2),x, algorithm="maxima")
 

Output:

integrate(sqrt(b*x^3 + a)/(c*x)^(7/2), x)
 

Giac [F]

\[ \int \frac {\sqrt {a+b x^3}}{(c x)^{7/2}} \, dx=\int { \frac {\sqrt {b x^{3} + a}}{\left (c x\right )^{\frac {7}{2}}} \,d x } \] Input:

integrate((b*x^3+a)^(1/2)/(c*x)^(7/2),x, algorithm="giac")
 

Output:

integrate(sqrt(b*x^3 + a)/(c*x)^(7/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+b x^3}}{(c x)^{7/2}} \, dx=\int \frac {\sqrt {b\,x^3+a}}{{\left (c\,x\right )}^{7/2}} \,d x \] Input:

int((a + b*x^3)^(1/2)/(c*x)^(7/2),x)
 

Output:

int((a + b*x^3)^(1/2)/(c*x)^(7/2), x)
 

Reduce [F]

\[ \int \frac {\sqrt {a+b x^3}}{(c x)^{7/2}} \, dx=\frac {\sqrt {c}\, \left (-2 \sqrt {b \,x^{3}+a}-3 \sqrt {x}\, \left (\int \frac {\sqrt {x}\, \sqrt {b \,x^{3}+a}}{b \,x^{7}+a \,x^{4}}d x \right ) a \,x^{2}\right )}{2 \sqrt {x}\, c^{4} x^{2}} \] Input:

int((b*x^3+a)^(1/2)/(c*x)^(7/2),x)
 

Output:

(sqrt(c)*( - 2*sqrt(a + b*x**3) - 3*sqrt(x)*int((sqrt(x)*sqrt(a + b*x**3)) 
/(a*x**4 + b*x**7),x)*a*x**2))/(2*sqrt(x)*c**4*x**2)