\(\int \frac {1}{\sqrt {c x} \sqrt {a+b x^3}} \, dx\) [328]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [A] (verification not implemented)
Sympy [C] (verification not implemented)
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 19, antiderivative size = 204 \[ \int \frac {1}{\sqrt {c x} \sqrt {a+b x^3}} \, dx=\frac {\sqrt {c x} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right )^2}} \operatorname {EllipticF}\left (\arccos \left (\frac {\sqrt [3]{a}+\left (1-\sqrt {3}\right ) \sqrt [3]{b} x}{\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x}\right ),\frac {1}{4} \left (2+\sqrt {3}\right )\right )}{\sqrt [4]{3} \sqrt [3]{a} c \sqrt {\frac {\sqrt [3]{b} x \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}} \] Output:

1/3*(c*x)^(1/2)*(a^(1/3)+b^(1/3)*x)*((a^(2/3)-a^(1/3)*b^(1/3)*x+b^(2/3)*x^ 
2)/(a^(1/3)+(1+3^(1/2))*b^(1/3)*x)^2)^(1/2)*InverseJacobiAM(arccos((a^(1/3 
)+(1-3^(1/2))*b^(1/3)*x)/(a^(1/3)+(1+3^(1/2))*b^(1/3)*x)),1/4*6^(1/2)+1/4* 
2^(1/2))*3^(3/4)/a^(1/3)/c/(b^(1/3)*x*(a^(1/3)+b^(1/3)*x)/(a^(1/3)+(1+3^(1 
/2))*b^(1/3)*x)^2)^(1/2)/(b*x^3+a)^(1/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.01 (sec) , antiderivative size = 54, normalized size of antiderivative = 0.26 \[ \int \frac {1}{\sqrt {c x} \sqrt {a+b x^3}} \, dx=\frac {2 x \sqrt {1+\frac {b x^3}{a}} \operatorname {Hypergeometric2F1}\left (\frac {1}{6},\frac {1}{2},\frac {7}{6},-\frac {b x^3}{a}\right )}{\sqrt {c x} \sqrt {a+b x^3}} \] Input:

Integrate[1/(Sqrt[c*x]*Sqrt[a + b*x^3]),x]
 

Output:

(2*x*Sqrt[1 + (b*x^3)/a]*Hypergeometric2F1[1/6, 1/2, 7/6, -((b*x^3)/a)])/( 
Sqrt[c*x]*Sqrt[a + b*x^3])
 

Rubi [A] (verified)

Time = 0.47 (sec) , antiderivative size = 233, normalized size of antiderivative = 1.14, number of steps used = 3, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.105, Rules used = {851, 766}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\sqrt {c x} \sqrt {a+b x^3}} \, dx\)

\(\Big \downarrow \) 851

\(\displaystyle \frac {2 \int \frac {1}{\sqrt {b x^3+a}}d\sqrt {c x}}{c}\)

\(\Big \downarrow \) 766

\(\displaystyle \frac {\sqrt {c x} \left (\sqrt [3]{a} c+\sqrt [3]{b} c x\right ) \sqrt {\frac {a^{2/3} c^2-\sqrt [3]{a} \sqrt [3]{b} c^2 x+b^{2/3} c^2 x^2}{\left (\sqrt [3]{a} c+\left (1+\sqrt {3}\right ) \sqrt [3]{b} c x\right )^2}} \operatorname {EllipticF}\left (\arccos \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{b} x c+\sqrt [3]{a} c}{\left (1+\sqrt {3}\right ) \sqrt [3]{b} x c+\sqrt [3]{a} c}\right ),\frac {1}{4} \left (2+\sqrt {3}\right )\right )}{\sqrt [4]{3} \sqrt [3]{a} c^2 \sqrt {a+b x^3} \sqrt {\frac {\sqrt [3]{b} c x \left (\sqrt [3]{a} c+\sqrt [3]{b} c x\right )}{\left (\sqrt [3]{a} c+\left (1+\sqrt {3}\right ) \sqrt [3]{b} c x\right )^2}}}\)

Input:

Int[1/(Sqrt[c*x]*Sqrt[a + b*x^3]),x]
 

Output:

(Sqrt[c*x]*(a^(1/3)*c + b^(1/3)*c*x)*Sqrt[(a^(2/3)*c^2 - a^(1/3)*b^(1/3)*c 
^2*x + b^(2/3)*c^2*x^2)/(a^(1/3)*c + (1 + Sqrt[3])*b^(1/3)*c*x)^2]*Ellipti 
cF[ArcCos[(a^(1/3)*c + (1 - Sqrt[3])*b^(1/3)*c*x)/(a^(1/3)*c + (1 + Sqrt[3 
])*b^(1/3)*c*x)], (2 + Sqrt[3])/4])/(3^(1/4)*a^(1/3)*c^2*Sqrt[(b^(1/3)*c*x 
*(a^(1/3)*c + b^(1/3)*c*x))/(a^(1/3)*c + (1 + Sqrt[3])*b^(1/3)*c*x)^2]*Sqr 
t[a + b*x^3])
 

Defintions of rubi rules used

rule 766
Int[1/Sqrt[(a_) + (b_.)*(x_)^6], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], 
s = Denom[Rt[b/a, 3]]}, Simp[x*(s + r*x^2)*(Sqrt[(s^2 - r*s*x^2 + r^2*x^4)/ 
(s + (1 + Sqrt[3])*r*x^2)^2]/(2*3^(1/4)*s*Sqrt[a + b*x^6]*Sqrt[r*x^2*((s + 
r*x^2)/(s + (1 + Sqrt[3])*r*x^2)^2)]))*EllipticF[ArcCos[(s + (1 - Sqrt[3])* 
r*x^2)/(s + (1 + Sqrt[3])*r*x^2)], (2 + Sqrt[3])/4], x]] /; FreeQ[{a, b}, x 
]
 

rule 851
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = 
 Denominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^ 
n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && 
FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]
 
Maple [C] (verified)

Result contains complex when optimal does not.

Time = 1.50 (sec) , antiderivative size = 432, normalized size of antiderivative = 2.12

method result size
default \(-\frac {4 \sqrt {b \,x^{3}+a}\, x c \sqrt {-\frac {\left (i \sqrt {3}-3\right ) x b}{\left (i \sqrt {3}-1\right ) \left (-b x +\left (-a \,b^{2}\right )^{\frac {1}{3}}\right )}}\, \sqrt {\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}+2 b x +\left (-a \,b^{2}\right )^{\frac {1}{3}}}{\left (1+i \sqrt {3}\right ) \left (-b x +\left (-a \,b^{2}\right )^{\frac {1}{3}}\right )}}\, \sqrt {\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}-2 b x -\left (-a \,b^{2}\right )^{\frac {1}{3}}}{\left (i \sqrt {3}-1\right ) \left (-b x +\left (-a \,b^{2}\right )^{\frac {1}{3}}\right )}}\, \operatorname {EllipticF}\left (\sqrt {-\frac {\left (i \sqrt {3}-3\right ) x b}{\left (i \sqrt {3}-1\right ) \left (-b x +\left (-a \,b^{2}\right )^{\frac {1}{3}}\right )}}, \sqrt {\frac {\left (i \sqrt {3}+3\right ) \left (i \sqrt {3}-1\right )}{\left (1+i \sqrt {3}\right ) \left (i \sqrt {3}-3\right )}}\right ) \left (i \sqrt {3}\, b^{2} x^{2}-2 i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}} b x +i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {2}{3}}-b^{2} x^{2}+2 \left (-a \,b^{2}\right )^{\frac {1}{3}} b x -\left (-a \,b^{2}\right )^{\frac {2}{3}}\right )}{b \left (-a \,b^{2}\right )^{\frac {1}{3}} \sqrt {c x}\, \sqrt {c x \left (b \,x^{3}+a \right )}\, \left (i \sqrt {3}-3\right ) \sqrt {\frac {c x \left (-b x +\left (-a \,b^{2}\right )^{\frac {1}{3}}\right ) \left (i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}+2 b x +\left (-a \,b^{2}\right )^{\frac {1}{3}}\right ) \left (i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}-2 b x -\left (-a \,b^{2}\right )^{\frac {1}{3}}\right )}{b^{2}}}}\) \(432\)
elliptic \(\frac {2 \sqrt {c x \left (b \,x^{3}+a \right )}\, \left (\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {\frac {\left (-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) x}{\left (-\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \left (x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}\right )}}\, {\left (x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}\right )}^{2} \sqrt {\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}} \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}{b \left (-\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \left (x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}\right )}}\, \sqrt {\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}} \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}{b \left (-\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \left (x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}\right )}}\, b \operatorname {EllipticF}\left (\sqrt {\frac {\left (-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) x}{\left (-\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \left (x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}\right )}}, \sqrt {\frac {\left (\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \left (\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}{\left (\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \left (\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}}\right )}{\sqrt {c x}\, \sqrt {b \,x^{3}+a}\, \left (-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \left (-a \,b^{2}\right )^{\frac {1}{3}} \sqrt {b c x \left (x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}\right ) \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}}\) \(698\)

Input:

int(1/(c*x)^(1/2)/(b*x^3+a)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

-4*(b*x^3+a)^(1/2)*x/b/(-a*b^2)^(1/3)*c*(-(I*3^(1/2)-3)*x*b/(I*3^(1/2)-1)/ 
(-b*x+(-a*b^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-a*b^2)^(1/3)+2*b*x+(-a*b^2)^(1/ 
3))/(1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-a*b^2)^(1/3)- 
2*b*x-(-a*b^2)^(1/3))/(I*3^(1/2)-1)/(-b*x+(-a*b^2)^(1/3)))^(1/2)*EllipticF 
((-(I*3^(1/2)-3)*x*b/(I*3^(1/2)-1)/(-b*x+(-a*b^2)^(1/3)))^(1/2),((I*3^(1/2 
)+3)*(I*3^(1/2)-1)/(1+I*3^(1/2))/(I*3^(1/2)-3))^(1/2))*(I*3^(1/2)*b^2*x^2- 
2*I*3^(1/2)*(-a*b^2)^(1/3)*b*x+I*3^(1/2)*(-a*b^2)^(2/3)-b^2*x^2+2*(-a*b^2) 
^(1/3)*b*x-(-a*b^2)^(2/3))/(c*x)^(1/2)/(c*x*(b*x^3+a))^(1/2)/(I*3^(1/2)-3) 
/(1/b^2*c*x*(-b*x+(-a*b^2)^(1/3))*(I*3^(1/2)*(-a*b^2)^(1/3)+2*b*x+(-a*b^2) 
^(1/3))*(I*3^(1/2)*(-a*b^2)^(1/3)-2*b*x-(-a*b^2)^(1/3)))^(1/2)
 

Fricas [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 24, normalized size of antiderivative = 0.12 \[ \int \frac {1}{\sqrt {c x} \sqrt {a+b x^3}} \, dx=-\frac {2 \, \sqrt {a c} {\rm weierstrassPInverse}\left (0, -\frac {4 \, b}{a}, \frac {1}{x}\right )}{a c} \] Input:

integrate(1/(c*x)^(1/2)/(b*x^3+a)^(1/2),x, algorithm="fricas")
 

Output:

-2*sqrt(a*c)*weierstrassPInverse(0, -4*b/a, 1/x)/(a*c)
 

Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.63 (sec) , antiderivative size = 44, normalized size of antiderivative = 0.22 \[ \int \frac {1}{\sqrt {c x} \sqrt {a+b x^3}} \, dx=\frac {\sqrt {x} \Gamma \left (\frac {1}{6}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{6}, \frac {1}{2} \\ \frac {7}{6} \end {matrix}\middle | {\frac {b x^{3} e^{i \pi }}{a}} \right )}}{3 \sqrt {a} \sqrt {c} \Gamma \left (\frac {7}{6}\right )} \] Input:

integrate(1/(c*x)**(1/2)/(b*x**3+a)**(1/2),x)
 

Output:

sqrt(x)*gamma(1/6)*hyper((1/6, 1/2), (7/6,), b*x**3*exp_polar(I*pi)/a)/(3* 
sqrt(a)*sqrt(c)*gamma(7/6))
 

Maxima [F]

\[ \int \frac {1}{\sqrt {c x} \sqrt {a+b x^3}} \, dx=\int { \frac {1}{\sqrt {b x^{3} + a} \sqrt {c x}} \,d x } \] Input:

integrate(1/(c*x)^(1/2)/(b*x^3+a)^(1/2),x, algorithm="maxima")
 

Output:

integrate(1/(sqrt(b*x^3 + a)*sqrt(c*x)), x)
 

Giac [F]

\[ \int \frac {1}{\sqrt {c x} \sqrt {a+b x^3}} \, dx=\int { \frac {1}{\sqrt {b x^{3} + a} \sqrt {c x}} \,d x } \] Input:

integrate(1/(c*x)^(1/2)/(b*x^3+a)^(1/2),x, algorithm="giac")
 

Output:

integrate(1/(sqrt(b*x^3 + a)*sqrt(c*x)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt {c x} \sqrt {a+b x^3}} \, dx=\int \frac {1}{\sqrt {c\,x}\,\sqrt {b\,x^3+a}} \,d x \] Input:

int(1/((c*x)^(1/2)*(a + b*x^3)^(1/2)),x)
 

Output:

int(1/((c*x)^(1/2)*(a + b*x^3)^(1/2)), x)
 

Reduce [F]

\[ \int \frac {1}{\sqrt {c x} \sqrt {a+b x^3}} \, dx=\frac {\sqrt {c}\, \left (\int \frac {\sqrt {x}\, \sqrt {b \,x^{3}+a}}{b \,x^{4}+a x}d x \right )}{c} \] Input:

int(1/(c*x)^(1/2)/(b*x^3+a)^(1/2),x)
 

Output:

(sqrt(c)*int((sqrt(x)*sqrt(a + b*x**3))/(a*x + b*x**4),x))/c