\(\int \frac {1}{(c x)^{3/2} \sqrt {a+b x^3}} \, dx\) [334]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [A] (verification not implemented)
Sympy [C] (verification not implemented)
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 19, antiderivative size = 516 \[ \int \frac {1}{(c x)^{3/2} \sqrt {a+b x^3}} \, dx=-\frac {2 \sqrt {a+b x^3}}{a c \sqrt {c x}}+\frac {2 \left (1+\sqrt {3}\right ) \sqrt [3]{b} \sqrt {c x} \sqrt {a+b x^3}}{a c^2 \left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right )}-\frac {2 \sqrt [4]{3} \sqrt [3]{b} \sqrt {c x} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right )^2}} E\left (\arccos \left (\frac {\sqrt [3]{a}+\left (1-\sqrt {3}\right ) \sqrt [3]{b} x}{\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x}\right )|\frac {1}{4} \left (2+\sqrt {3}\right )\right )}{a^{2/3} c^2 \sqrt {\frac {\sqrt [3]{b} x \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}}-\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{b} \sqrt {c x} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right )^2}} \operatorname {EllipticF}\left (\arccos \left (\frac {\sqrt [3]{a}+\left (1-\sqrt {3}\right ) \sqrt [3]{b} x}{\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x}\right ),\frac {1}{4} \left (2+\sqrt {3}\right )\right )}{\sqrt [4]{3} a^{2/3} c^2 \sqrt {\frac {\sqrt [3]{b} x \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}} \] Output:

-2*(b*x^3+a)^(1/2)/a/c/(c*x)^(1/2)+2*(1+3^(1/2))*b^(1/3)*(c*x)^(1/2)*(b*x^ 
3+a)^(1/2)/a/c^2/(a^(1/3)+(1+3^(1/2))*b^(1/3)*x)-2*3^(1/4)*b^(1/3)*(c*x)^( 
1/2)*(a^(1/3)+b^(1/3)*x)*((a^(2/3)-a^(1/3)*b^(1/3)*x+b^(2/3)*x^2)/(a^(1/3) 
+(1+3^(1/2))*b^(1/3)*x)^2)^(1/2)*EllipticE((1-(a^(1/3)+(1-3^(1/2))*b^(1/3) 
*x)^2/(a^(1/3)+(1+3^(1/2))*b^(1/3)*x)^2)^(1/2),1/4*6^(1/2)+1/4*2^(1/2))/a^ 
(2/3)/c^2/(b^(1/3)*x*(a^(1/3)+b^(1/3)*x)/(a^(1/3)+(1+3^(1/2))*b^(1/3)*x)^2 
)^(1/2)/(b*x^3+a)^(1/2)-1/3*(1-3^(1/2))*b^(1/3)*(c*x)^(1/2)*(a^(1/3)+b^(1/ 
3)*x)*((a^(2/3)-a^(1/3)*b^(1/3)*x+b^(2/3)*x^2)/(a^(1/3)+(1+3^(1/2))*b^(1/3 
)*x)^2)^(1/2)*InverseJacobiAM(arccos((a^(1/3)+(1-3^(1/2))*b^(1/3)*x)/(a^(1 
/3)+(1+3^(1/2))*b^(1/3)*x)),1/4*6^(1/2)+1/4*2^(1/2))*3^(3/4)/a^(2/3)/c^2/( 
b^(1/3)*x*(a^(1/3)+b^(1/3)*x)/(a^(1/3)+(1+3^(1/2))*b^(1/3)*x)^2)^(1/2)/(b* 
x^3+a)^(1/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.01 (sec) , antiderivative size = 54, normalized size of antiderivative = 0.10 \[ \int \frac {1}{(c x)^{3/2} \sqrt {a+b x^3}} \, dx=-\frac {2 x \sqrt {1+\frac {b x^3}{a}} \operatorname {Hypergeometric2F1}\left (-\frac {1}{6},\frac {1}{2},\frac {5}{6},-\frac {b x^3}{a}\right )}{(c x)^{3/2} \sqrt {a+b x^3}} \] Input:

Integrate[1/((c*x)^(3/2)*Sqrt[a + b*x^3]),x]
 

Output:

(-2*x*Sqrt[1 + (b*x^3)/a]*Hypergeometric2F1[-1/6, 1/2, 5/6, -((b*x^3)/a)]) 
/((c*x)^(3/2)*Sqrt[a + b*x^3])
 

Rubi [A] (verified)

Time = 1.09 (sec) , antiderivative size = 581, normalized size of antiderivative = 1.13, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.316, Rules used = {847, 851, 837, 25, 766, 2420}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{(c x)^{3/2} \sqrt {a+b x^3}} \, dx\)

\(\Big \downarrow \) 847

\(\displaystyle \frac {2 b \int \frac {(c x)^{3/2}}{\sqrt {b x^3+a}}dx}{a c^3}-\frac {2 \sqrt {a+b x^3}}{a c \sqrt {c x}}\)

\(\Big \downarrow \) 851

\(\displaystyle \frac {4 b \int \frac {c^2 x^2}{\sqrt {b x^3+a}}d\sqrt {c x}}{a c^4}-\frac {2 \sqrt {a+b x^3}}{a c \sqrt {c x}}\)

\(\Big \downarrow \) 837

\(\displaystyle \frac {4 b \left (-\frac {\left (1-\sqrt {3}\right ) a^{2/3} c^2 \int \frac {1}{\sqrt {b x^3+a}}d\sqrt {c x}}{2 b^{2/3}}-\frac {\int -\frac {2 b^{2/3} x^2 c^2+\left (1-\sqrt {3}\right ) a^{2/3} c^2}{\sqrt {b x^3+a}}d\sqrt {c x}}{2 b^{2/3}}\right )}{a c^4}-\frac {2 \sqrt {a+b x^3}}{a c \sqrt {c x}}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {4 b \left (\frac {\int \frac {2 b^{2/3} x^2 c^2+\left (1-\sqrt {3}\right ) a^{2/3} c^2}{\sqrt {b x^3+a}}d\sqrt {c x}}{2 b^{2/3}}-\frac {\left (1-\sqrt {3}\right ) a^{2/3} c^2 \int \frac {1}{\sqrt {b x^3+a}}d\sqrt {c x}}{2 b^{2/3}}\right )}{a c^4}-\frac {2 \sqrt {a+b x^3}}{a c \sqrt {c x}}\)

\(\Big \downarrow \) 766

\(\displaystyle \frac {4 b \left (\frac {\int \frac {2 b^{2/3} x^2 c^2+\left (1-\sqrt {3}\right ) a^{2/3} c^2}{\sqrt {b x^3+a}}d\sqrt {c x}}{2 b^{2/3}}-\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a} c \sqrt {c x} \left (\sqrt [3]{a} c+\sqrt [3]{b} c x\right ) \sqrt {\frac {a^{2/3} c^2-\sqrt [3]{a} \sqrt [3]{b} c^2 x+b^{2/3} c^2 x^2}{\left (\sqrt [3]{a} c+\left (1+\sqrt {3}\right ) \sqrt [3]{b} c x\right )^2}} \operatorname {EllipticF}\left (\arccos \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{b} x c+\sqrt [3]{a} c}{\left (1+\sqrt {3}\right ) \sqrt [3]{b} x c+\sqrt [3]{a} c}\right ),\frac {1}{4} \left (2+\sqrt {3}\right )\right )}{4 \sqrt [4]{3} b^{2/3} \sqrt {a+b x^3} \sqrt {\frac {\sqrt [3]{b} c x \left (\sqrt [3]{a} c+\sqrt [3]{b} c x\right )}{\left (\sqrt [3]{a} c+\left (1+\sqrt {3}\right ) \sqrt [3]{b} c x\right )^2}}}\right )}{a c^4}-\frac {2 \sqrt {a+b x^3}}{a c \sqrt {c x}}\)

\(\Big \downarrow \) 2420

\(\displaystyle \frac {4 b \left (\frac {\frac {\left (1+\sqrt {3}\right ) c^3 \sqrt {c x} \sqrt {a+b x^3}}{\sqrt [3]{a} c+\left (1+\sqrt {3}\right ) \sqrt [3]{b} c x}-\frac {\sqrt [4]{3} \sqrt [3]{a} c \sqrt {c x} \left (\sqrt [3]{a} c+\sqrt [3]{b} c x\right ) \sqrt {\frac {a^{2/3} c^2-\sqrt [3]{a} \sqrt [3]{b} c^2 x+b^{2/3} c^2 x^2}{\left (\sqrt [3]{a} c+\left (1+\sqrt {3}\right ) \sqrt [3]{b} c x\right )^2}} E\left (\arccos \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{b} x c+\sqrt [3]{a} c}{\left (1+\sqrt {3}\right ) \sqrt [3]{b} x c+\sqrt [3]{a} c}\right )|\frac {1}{4} \left (2+\sqrt {3}\right )\right )}{\sqrt {a+b x^3} \sqrt {\frac {\sqrt [3]{b} c x \left (\sqrt [3]{a} c+\sqrt [3]{b} c x\right )}{\left (\sqrt [3]{a} c+\left (1+\sqrt {3}\right ) \sqrt [3]{b} c x\right )^2}}}}{2 b^{2/3}}-\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a} c \sqrt {c x} \left (\sqrt [3]{a} c+\sqrt [3]{b} c x\right ) \sqrt {\frac {a^{2/3} c^2-\sqrt [3]{a} \sqrt [3]{b} c^2 x+b^{2/3} c^2 x^2}{\left (\sqrt [3]{a} c+\left (1+\sqrt {3}\right ) \sqrt [3]{b} c x\right )^2}} \operatorname {EllipticF}\left (\arccos \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{b} x c+\sqrt [3]{a} c}{\left (1+\sqrt {3}\right ) \sqrt [3]{b} x c+\sqrt [3]{a} c}\right ),\frac {1}{4} \left (2+\sqrt {3}\right )\right )}{4 \sqrt [4]{3} b^{2/3} \sqrt {a+b x^3} \sqrt {\frac {\sqrt [3]{b} c x \left (\sqrt [3]{a} c+\sqrt [3]{b} c x\right )}{\left (\sqrt [3]{a} c+\left (1+\sqrt {3}\right ) \sqrt [3]{b} c x\right )^2}}}\right )}{a c^4}-\frac {2 \sqrt {a+b x^3}}{a c \sqrt {c x}}\)

Input:

Int[1/((c*x)^(3/2)*Sqrt[a + b*x^3]),x]
 

Output:

(-2*Sqrt[a + b*x^3])/(a*c*Sqrt[c*x]) + (4*b*((((1 + Sqrt[3])*c^3*Sqrt[c*x] 
*Sqrt[a + b*x^3])/(a^(1/3)*c + (1 + Sqrt[3])*b^(1/3)*c*x) - (3^(1/4)*a^(1/ 
3)*c*Sqrt[c*x]*(a^(1/3)*c + b^(1/3)*c*x)*Sqrt[(a^(2/3)*c^2 - a^(1/3)*b^(1/ 
3)*c^2*x + b^(2/3)*c^2*x^2)/(a^(1/3)*c + (1 + Sqrt[3])*b^(1/3)*c*x)^2]*Ell 
ipticE[ArcCos[(a^(1/3)*c + (1 - Sqrt[3])*b^(1/3)*c*x)/(a^(1/3)*c + (1 + Sq 
rt[3])*b^(1/3)*c*x)], (2 + Sqrt[3])/4])/(Sqrt[(b^(1/3)*c*x*(a^(1/3)*c + b^ 
(1/3)*c*x))/(a^(1/3)*c + (1 + Sqrt[3])*b^(1/3)*c*x)^2]*Sqrt[a + b*x^3]))/( 
2*b^(2/3)) - ((1 - Sqrt[3])*a^(1/3)*c*Sqrt[c*x]*(a^(1/3)*c + b^(1/3)*c*x)* 
Sqrt[(a^(2/3)*c^2 - a^(1/3)*b^(1/3)*c^2*x + b^(2/3)*c^2*x^2)/(a^(1/3)*c + 
(1 + Sqrt[3])*b^(1/3)*c*x)^2]*EllipticF[ArcCos[(a^(1/3)*c + (1 - Sqrt[3])* 
b^(1/3)*c*x)/(a^(1/3)*c + (1 + Sqrt[3])*b^(1/3)*c*x)], (2 + Sqrt[3])/4])/( 
4*3^(1/4)*b^(2/3)*Sqrt[(b^(1/3)*c*x*(a^(1/3)*c + b^(1/3)*c*x))/(a^(1/3)*c 
+ (1 + Sqrt[3])*b^(1/3)*c*x)^2]*Sqrt[a + b*x^3])))/(a*c^4)
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 766
Int[1/Sqrt[(a_) + (b_.)*(x_)^6], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], 
s = Denom[Rt[b/a, 3]]}, Simp[x*(s + r*x^2)*(Sqrt[(s^2 - r*s*x^2 + r^2*x^4)/ 
(s + (1 + Sqrt[3])*r*x^2)^2]/(2*3^(1/4)*s*Sqrt[a + b*x^6]*Sqrt[r*x^2*((s + 
r*x^2)/(s + (1 + Sqrt[3])*r*x^2)^2)]))*EllipticF[ArcCos[(s + (1 - Sqrt[3])* 
r*x^2)/(s + (1 + Sqrt[3])*r*x^2)], (2 + Sqrt[3])/4], x]] /; FreeQ[{a, b}, x 
]
 

rule 837
Int[(x_)^4/Sqrt[(a_) + (b_.)*(x_)^6], x_Symbol] :> With[{r = Numer[Rt[b/a, 
3]], s = Denom[Rt[b/a, 3]]}, Simp[(Sqrt[3] - 1)*(s^2/(2*r^2))   Int[1/Sqrt[ 
a + b*x^6], x], x] - Simp[1/(2*r^2)   Int[((Sqrt[3] - 1)*s^2 - 2*r^2*x^4)/S 
qrt[a + b*x^6], x], x]] /; FreeQ[{a, b}, x]
 

rule 847
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c*x 
)^(m + 1)*((a + b*x^n)^(p + 1)/(a*c*(m + 1))), x] - Simp[b*((m + n*(p + 1) 
+ 1)/(a*c^n*(m + 1)))   Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; FreeQ[{a 
, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p 
, x]
 

rule 851
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = 
 Denominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^ 
n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && 
FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]
 

rule 2420
Int[((c_) + (d_.)*(x_)^4)/Sqrt[(a_) + (b_.)*(x_)^6], x_Symbol] :> With[{r = 
 Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[(1 + Sqrt[3])*d*s^3*x*(Sqr 
t[a + b*x^6]/(2*a*r^2*(s + (1 + Sqrt[3])*r*x^2))), x] - Simp[3^(1/4)*d*s*x* 
(s + r*x^2)*(Sqrt[(s^2 - r*s*x^2 + r^2*x^4)/(s + (1 + Sqrt[3])*r*x^2)^2]/(2 
*r^2*Sqrt[(r*x^2*(s + r*x^2))/(s + (1 + Sqrt[3])*r*x^2)^2]*Sqrt[a + b*x^6]) 
)*EllipticE[ArcCos[(s + (1 - Sqrt[3])*r*x^2)/(s + (1 + Sqrt[3])*r*x^2)], (2 
 + Sqrt[3])/4], x]] /; FreeQ[{a, b, c, d}, x] && EqQ[2*Rt[b/a, 3]^2*c - (1 
- Sqrt[3])*d, 0]
 
Maple [C] (verified)

Result contains complex when optimal does not.

Time = 1.61 (sec) , antiderivative size = 1112, normalized size of antiderivative = 2.16

method result size
risch \(\text {Expression too large to display}\) \(1112\)
elliptic \(\text {Expression too large to display}\) \(1123\)
default \(\text {Expression too large to display}\) \(2881\)

Input:

int(1/(c*x)^(3/2)/(b*x^3+a)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

-2*(b*x^3+a)^(1/2)/a/c/(c*x)^(1/2)+2*b/a*(x*(x+1/2/b*(-a*b^2)^(1/3)+1/2*I* 
3^(1/2)/b*(-a*b^2)^(1/3))*(x+1/2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2)/b*(-a*b^2) 
^(1/3))+(1/2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*((-3/2/b*(-a 
*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*x/(-1/2/b*(-a*b^2)^(1/3)+1/2*I 
*3^(1/2)/b*(-a*b^2)^(1/3))/(x-1/b*(-a*b^2)^(1/3)))^(1/2)*(x-1/b*(-a*b^2)^( 
1/3))^2*(1/b*(-a*b^2)^(1/3)*(x+1/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^ 
2)^(1/3))/(-1/2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))/(x-1/b*(- 
a*b^2)^(1/3)))^(1/2)*(1/b*(-a*b^2)^(1/3)*(x+1/2/b*(-a*b^2)^(1/3)-1/2*I*3^( 
1/2)/b*(-a*b^2)^(1/3))/(-1/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/ 
3))/(x-1/b*(-a*b^2)^(1/3)))^(1/2)*(((-1/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b 
*(-a*b^2)^(1/3))/b*(-a*b^2)^(1/3)+1/b^2*(-a*b^2)^(2/3))/(-3/2/b*(-a*b^2)^( 
1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*b/(-a*b^2)^(1/3)*EllipticF(((-3/2/b*( 
-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*x/(-1/2/b*(-a*b^2)^(1/3)+1/2 
*I*3^(1/2)/b*(-a*b^2)^(1/3))/(x-1/b*(-a*b^2)^(1/3)))^(1/2),((3/2/b*(-a*b^2 
)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*(1/2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2 
)/b*(-a*b^2)^(1/3))/(1/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))/ 
(3/2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2)/b*(-a*b^2)^(1/3)))^(1/2))+(1/2/b*(-a*b 
^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*EllipticE(((-3/2/b*(-a*b^2)^(1/3 
)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*x/(-1/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b 
*(-a*b^2)^(1/3))/(x-1/b*(-a*b^2)^(1/3)))^(1/2),((3/2/b*(-a*b^2)^(1/3)+1...
 

Fricas [A] (verification not implemented)

Time = 0.07 (sec) , antiderivative size = 32, normalized size of antiderivative = 0.06 \[ \int \frac {1}{(c x)^{3/2} \sqrt {a+b x^3}} \, dx=\frac {2 \, \sqrt {a c} {\rm weierstrassZeta}\left (0, -\frac {4 \, b}{a}, {\rm weierstrassPInverse}\left (0, -\frac {4 \, b}{a}, \frac {1}{x}\right )\right )}{a c^{2}} \] Input:

integrate(1/(c*x)^(3/2)/(b*x^3+a)^(1/2),x, algorithm="fricas")
 

Output:

2*sqrt(a*c)*weierstrassZeta(0, -4*b/a, weierstrassPInverse(0, -4*b/a, 1/x) 
)/(a*c^2)
 

Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.87 (sec) , antiderivative size = 48, normalized size of antiderivative = 0.09 \[ \int \frac {1}{(c x)^{3/2} \sqrt {a+b x^3}} \, dx=\frac {\Gamma \left (- \frac {1}{6}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {1}{6}, \frac {1}{2} \\ \frac {5}{6} \end {matrix}\middle | {\frac {b x^{3} e^{i \pi }}{a}} \right )}}{3 \sqrt {a} c^{\frac {3}{2}} \sqrt {x} \Gamma \left (\frac {5}{6}\right )} \] Input:

integrate(1/(c*x)**(3/2)/(b*x**3+a)**(1/2),x)
 

Output:

gamma(-1/6)*hyper((-1/6, 1/2), (5/6,), b*x**3*exp_polar(I*pi)/a)/(3*sqrt(a 
)*c**(3/2)*sqrt(x)*gamma(5/6))
 

Maxima [F]

\[ \int \frac {1}{(c x)^{3/2} \sqrt {a+b x^3}} \, dx=\int { \frac {1}{\sqrt {b x^{3} + a} \left (c x\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate(1/(c*x)^(3/2)/(b*x^3+a)^(1/2),x, algorithm="maxima")
                                                                                    
                                                                                    
 

Output:

integrate(1/(sqrt(b*x^3 + a)*(c*x)^(3/2)), x)
 

Giac [F]

\[ \int \frac {1}{(c x)^{3/2} \sqrt {a+b x^3}} \, dx=\int { \frac {1}{\sqrt {b x^{3} + a} \left (c x\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate(1/(c*x)^(3/2)/(b*x^3+a)^(1/2),x, algorithm="giac")
 

Output:

integrate(1/(sqrt(b*x^3 + a)*(c*x)^(3/2)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{(c x)^{3/2} \sqrt {a+b x^3}} \, dx=\int \frac {1}{{\left (c\,x\right )}^{3/2}\,\sqrt {b\,x^3+a}} \,d x \] Input:

int(1/((c*x)^(3/2)*(a + b*x^3)^(1/2)),x)
 

Output:

int(1/((c*x)^(3/2)*(a + b*x^3)^(1/2)), x)
 

Reduce [F]

\[ \int \frac {1}{(c x)^{3/2} \sqrt {a+b x^3}} \, dx=\frac {\sqrt {c}\, \left (\int \frac {\sqrt {x}\, \sqrt {b \,x^{3}+a}}{b \,x^{5}+a \,x^{2}}d x \right )}{c^{2}} \] Input:

int(1/(c*x)^(3/2)/(b*x^3+a)^(1/2),x)
 

Output:

(sqrt(c)*int((sqrt(x)*sqrt(a + b*x**3))/(a*x**2 + b*x**5),x))/c**2