\(\int \frac {(c x)^{5/2}}{(a+b x^3)^{3/2}} \, dx\) [345]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [A] (verification not implemented)
Sympy [C] (verification not implemented)
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 19, antiderivative size = 239 \[ \int \frac {(c x)^{5/2}}{\left (a+b x^3\right )^{3/2}} \, dx=-\frac {2 c^2 \sqrt {c x}}{3 b \sqrt {a+b x^3}}+\frac {c^2 \sqrt {c x} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right )^2}} \operatorname {EllipticF}\left (\arccos \left (\frac {\sqrt [3]{a}+\left (1-\sqrt {3}\right ) \sqrt [3]{b} x}{\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x}\right ),\frac {1}{4} \left (2+\sqrt {3}\right )\right )}{3 \sqrt [4]{3} \sqrt [3]{a} b \sqrt {\frac {\sqrt [3]{b} x \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}} \] Output:

-2/3*c^2*(c*x)^(1/2)/b/(b*x^3+a)^(1/2)+1/9*c^2*(c*x)^(1/2)*(a^(1/3)+b^(1/3 
)*x)*((a^(2/3)-a^(1/3)*b^(1/3)*x+b^(2/3)*x^2)/(a^(1/3)+(1+3^(1/2))*b^(1/3) 
*x)^2)^(1/2)*InverseJacobiAM(arccos((a^(1/3)+(1-3^(1/2))*b^(1/3)*x)/(a^(1/ 
3)+(1+3^(1/2))*b^(1/3)*x)),1/4*6^(1/2)+1/4*2^(1/2))*3^(3/4)/a^(1/3)/b/(b^( 
1/3)*x*(a^(1/3)+b^(1/3)*x)/(a^(1/3)+(1+3^(1/2))*b^(1/3)*x)^2)^(1/2)/(b*x^3 
+a)^(1/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.02 (sec) , antiderivative size = 64, normalized size of antiderivative = 0.27 \[ \int \frac {(c x)^{5/2}}{\left (a+b x^3\right )^{3/2}} \, dx=\frac {2 c^2 \sqrt {c x} \left (-1+\sqrt {1+\frac {b x^3}{a}} \operatorname {Hypergeometric2F1}\left (\frac {1}{6},\frac {1}{2},\frac {7}{6},-\frac {b x^3}{a}\right )\right )}{3 b \sqrt {a+b x^3}} \] Input:

Integrate[(c*x)^(5/2)/(a + b*x^3)^(3/2),x]
 

Output:

(2*c^2*Sqrt[c*x]*(-1 + Sqrt[1 + (b*x^3)/a]*Hypergeometric2F1[1/6, 1/2, 7/6 
, -((b*x^3)/a)]))/(3*b*Sqrt[a + b*x^3])
 

Rubi [A] (verified)

Time = 0.50 (sec) , antiderivative size = 266, normalized size of antiderivative = 1.11, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.158, Rules used = {817, 851, 766}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(c x)^{5/2}}{\left (a+b x^3\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 817

\(\displaystyle \frac {c^3 \int \frac {1}{\sqrt {c x} \sqrt {b x^3+a}}dx}{3 b}-\frac {2 c^2 \sqrt {c x}}{3 b \sqrt {a+b x^3}}\)

\(\Big \downarrow \) 851

\(\displaystyle \frac {2 c^2 \int \frac {1}{\sqrt {b x^3+a}}d\sqrt {c x}}{3 b}-\frac {2 c^2 \sqrt {c x}}{3 b \sqrt {a+b x^3}}\)

\(\Big \downarrow \) 766

\(\displaystyle \frac {c \sqrt {c x} \left (\sqrt [3]{a} c+\sqrt [3]{b} c x\right ) \sqrt {\frac {a^{2/3} c^2-\sqrt [3]{a} \sqrt [3]{b} c^2 x+b^{2/3} c^2 x^2}{\left (\sqrt [3]{a} c+\left (1+\sqrt {3}\right ) \sqrt [3]{b} c x\right )^2}} \operatorname {EllipticF}\left (\arccos \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{b} x c+\sqrt [3]{a} c}{\left (1+\sqrt {3}\right ) \sqrt [3]{b} x c+\sqrt [3]{a} c}\right ),\frac {1}{4} \left (2+\sqrt {3}\right )\right )}{3 \sqrt [4]{3} \sqrt [3]{a} b \sqrt {a+b x^3} \sqrt {\frac {\sqrt [3]{b} c x \left (\sqrt [3]{a} c+\sqrt [3]{b} c x\right )}{\left (\sqrt [3]{a} c+\left (1+\sqrt {3}\right ) \sqrt [3]{b} c x\right )^2}}}-\frac {2 c^2 \sqrt {c x}}{3 b \sqrt {a+b x^3}}\)

Input:

Int[(c*x)^(5/2)/(a + b*x^3)^(3/2),x]
 

Output:

(-2*c^2*Sqrt[c*x])/(3*b*Sqrt[a + b*x^3]) + (c*Sqrt[c*x]*(a^(1/3)*c + b^(1/ 
3)*c*x)*Sqrt[(a^(2/3)*c^2 - a^(1/3)*b^(1/3)*c^2*x + b^(2/3)*c^2*x^2)/(a^(1 
/3)*c + (1 + Sqrt[3])*b^(1/3)*c*x)^2]*EllipticF[ArcCos[(a^(1/3)*c + (1 - S 
qrt[3])*b^(1/3)*c*x)/(a^(1/3)*c + (1 + Sqrt[3])*b^(1/3)*c*x)], (2 + Sqrt[3 
])/4])/(3*3^(1/4)*a^(1/3)*b*Sqrt[(b^(1/3)*c*x*(a^(1/3)*c + b^(1/3)*c*x))/( 
a^(1/3)*c + (1 + Sqrt[3])*b^(1/3)*c*x)^2]*Sqrt[a + b*x^3])
 

Defintions of rubi rules used

rule 766
Int[1/Sqrt[(a_) + (b_.)*(x_)^6], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], 
s = Denom[Rt[b/a, 3]]}, Simp[x*(s + r*x^2)*(Sqrt[(s^2 - r*s*x^2 + r^2*x^4)/ 
(s + (1 + Sqrt[3])*r*x^2)^2]/(2*3^(1/4)*s*Sqrt[a + b*x^6]*Sqrt[r*x^2*((s + 
r*x^2)/(s + (1 + Sqrt[3])*r*x^2)^2)]))*EllipticF[ArcCos[(s + (1 - Sqrt[3])* 
r*x^2)/(s + (1 + Sqrt[3])*r*x^2)], (2 + Sqrt[3])/4], x]] /; FreeQ[{a, b}, x 
]
 

rule 817
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^( 
n - 1)*(c*x)^(m - n + 1)*((a + b*x^n)^(p + 1)/(b*n*(p + 1))), x] - Simp[c^n 
*((m - n + 1)/(b*n*(p + 1)))   Int[(c*x)^(m - n)*(a + b*x^n)^(p + 1), x], x 
] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m + 1, n] &&  ! 
ILtQ[(m + n*(p + 1) + 1)/n, 0] && IntBinomialQ[a, b, c, n, m, p, x]
 

rule 851
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = 
 Denominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^ 
n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && 
FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]
 
Maple [C] (verified)

Result contains complex when optimal does not.

Time = 1.00 (sec) , antiderivative size = 732, normalized size of antiderivative = 3.06

method result size
elliptic \(\frac {\sqrt {c x}\, \sqrt {c x \left (b \,x^{3}+a \right )}\, \left (-\frac {2 c^{3} x}{3 b \sqrt {\left (x^{3}+\frac {a}{b}\right ) b c x}}+\frac {2 c^{3} \left (\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {\frac {\left (-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) x}{\left (-\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \left (x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}\right )}}\, {\left (x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}\right )}^{2} \sqrt {\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}} \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}{b \left (-\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \left (x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}\right )}}\, \sqrt {\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}} \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}{b \left (-\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \left (x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}\right )}}\, \operatorname {EllipticF}\left (\sqrt {\frac {\left (-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) x}{\left (-\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \left (x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}\right )}}, \sqrt {\frac {\left (\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \left (\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}{\left (\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \left (\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}}\right )}{3 \left (-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \left (-a \,b^{2}\right )^{\frac {1}{3}} \sqrt {b c x \left (x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}\right ) \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}}\right )}{c x \sqrt {b \,x^{3}+a}}\) \(732\)
default \(\text {Expression too large to display}\) \(1828\)

Input:

int((c*x)^(5/2)/(b*x^3+a)^(3/2),x,method=_RETURNVERBOSE)
 

Output:

1/c/x*(c*x)^(1/2)/(b*x^3+a)^(1/2)*(c*x*(b*x^3+a))^(1/2)*(-2/3/b*c^3*x/((x^ 
3+a/b)*b*c*x)^(1/2)+2/3*c^3*(1/2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2)/b*(-a*b^2) 
^(1/3))*((-3/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*x/(-1/2/b* 
(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))/(x-1/b*(-a*b^2)^(1/3)))^(1/ 
2)*(x-1/b*(-a*b^2)^(1/3))^2*(1/b*(-a*b^2)^(1/3)*(x+1/2/b*(-a*b^2)^(1/3)+1/ 
2*I*3^(1/2)/b*(-a*b^2)^(1/3))/(-1/2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2)/b*(-a*b 
^2)^(1/3))/(x-1/b*(-a*b^2)^(1/3)))^(1/2)*(1/b*(-a*b^2)^(1/3)*(x+1/2/b*(-a* 
b^2)^(1/3)-1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))/(-1/2/b*(-a*b^2)^(1/3)+1/2*I*3^ 
(1/2)/b*(-a*b^2)^(1/3))/(x-1/b*(-a*b^2)^(1/3)))^(1/2)/(-3/2/b*(-a*b^2)^(1/ 
3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))/(-a*b^2)^(1/3)/(b*c*x*(x-1/b*(-a*b^2)^( 
1/3))*(x+1/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*(x+1/2/b*(-a 
*b^2)^(1/3)-1/2*I*3^(1/2)/b*(-a*b^2)^(1/3)))^(1/2)*EllipticF(((-3/2/b*(-a* 
b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*x/(-1/2/b*(-a*b^2)^(1/3)+1/2*I* 
3^(1/2)/b*(-a*b^2)^(1/3))/(x-1/b*(-a*b^2)^(1/3)))^(1/2),((3/2/b*(-a*b^2)^( 
1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*(1/2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2)/b 
*(-a*b^2)^(1/3))/(1/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))/(3/ 
2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2)/b*(-a*b^2)^(1/3)))^(1/2)))
 

Fricas [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 69, normalized size of antiderivative = 0.29 \[ \int \frac {(c x)^{5/2}}{\left (a+b x^3\right )^{3/2}} \, dx=-\frac {2 \, {\left (\sqrt {b x^{3} + a} \sqrt {c x} a c^{2} + {\left (b c^{2} x^{3} + a c^{2}\right )} \sqrt {a c} {\rm weierstrassPInverse}\left (0, -\frac {4 \, b}{a}, \frac {1}{x}\right )\right )}}{3 \, {\left (a b^{2} x^{3} + a^{2} b\right )}} \] Input:

integrate((c*x)^(5/2)/(b*x^3+a)^(3/2),x, algorithm="fricas")
 

Output:

-2/3*(sqrt(b*x^3 + a)*sqrt(c*x)*a*c^2 + (b*c^2*x^3 + a*c^2)*sqrt(a*c)*weie 
rstrassPInverse(0, -4*b/a, 1/x))/(a*b^2*x^3 + a^2*b)
 

Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 3.36 (sec) , antiderivative size = 44, normalized size of antiderivative = 0.18 \[ \int \frac {(c x)^{5/2}}{\left (a+b x^3\right )^{3/2}} \, dx=\frac {c^{\frac {5}{2}} x^{\frac {7}{2}} \Gamma \left (\frac {7}{6}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {7}{6}, \frac {3}{2} \\ \frac {13}{6} \end {matrix}\middle | {\frac {b x^{3} e^{i \pi }}{a}} \right )}}{3 a^{\frac {3}{2}} \Gamma \left (\frac {13}{6}\right )} \] Input:

integrate((c*x)**(5/2)/(b*x**3+a)**(3/2),x)
 

Output:

c**(5/2)*x**(7/2)*gamma(7/6)*hyper((7/6, 3/2), (13/6,), b*x**3*exp_polar(I 
*pi)/a)/(3*a**(3/2)*gamma(13/6))
 

Maxima [F]

\[ \int \frac {(c x)^{5/2}}{\left (a+b x^3\right )^{3/2}} \, dx=\int { \frac {\left (c x\right )^{\frac {5}{2}}}{{\left (b x^{3} + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate((c*x)^(5/2)/(b*x^3+a)^(3/2),x, algorithm="maxima")
 

Output:

integrate((c*x)^(5/2)/(b*x^3 + a)^(3/2), x)
 

Giac [F]

\[ \int \frac {(c x)^{5/2}}{\left (a+b x^3\right )^{3/2}} \, dx=\int { \frac {\left (c x\right )^{\frac {5}{2}}}{{\left (b x^{3} + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate((c*x)^(5/2)/(b*x^3+a)^(3/2),x, algorithm="giac")
 

Output:

integrate((c*x)^(5/2)/(b*x^3 + a)^(3/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(c x)^{5/2}}{\left (a+b x^3\right )^{3/2}} \, dx=\int \frac {{\left (c\,x\right )}^{5/2}}{{\left (b\,x^3+a\right )}^{3/2}} \,d x \] Input:

int((c*x)^(5/2)/(a + b*x^3)^(3/2),x)
 

Output:

int((c*x)^(5/2)/(a + b*x^3)^(3/2), x)
 

Reduce [F]

\[ \int \frac {(c x)^{5/2}}{\left (a+b x^3\right )^{3/2}} \, dx=\frac {\sqrt {c}\, c^{2} \left (-2 \sqrt {x}\, \sqrt {b \,x^{3}+a}+\left (\int \frac {\sqrt {x}\, \sqrt {b \,x^{3}+a}}{b^{2} x^{7}+2 a b \,x^{4}+a^{2} x}d x \right ) a^{2}+\left (\int \frac {\sqrt {x}\, \sqrt {b \,x^{3}+a}}{b^{2} x^{7}+2 a b \,x^{4}+a^{2} x}d x \right ) a b \,x^{3}\right )}{2 b \left (b \,x^{3}+a \right )} \] Input:

int((c*x)^(5/2)/(b*x^3+a)^(3/2),x)
 

Output:

(sqrt(c)*c**2*( - 2*sqrt(x)*sqrt(a + b*x**3) + int((sqrt(x)*sqrt(a + b*x** 
3))/(a**2*x + 2*a*b*x**4 + b**2*x**7),x)*a**2 + int((sqrt(x)*sqrt(a + b*x* 
*3))/(a**2*x + 2*a*b*x**4 + b**2*x**7),x)*a*b*x**3))/(2*b*(a + b*x**3))