\(\int \frac {x^2}{(a+c x^4)^2} \, dx\) [82]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [C] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 13, antiderivative size = 153 \[ \int \frac {x^2}{\left (a+c x^4\right )^2} \, dx=\frac {x^3}{4 a \left (a+c x^4\right )}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{8 \sqrt {2} a^{5/4} c^{3/4}}+\frac {\arctan \left (1+\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{8 \sqrt {2} a^{5/4} c^{3/4}}-\frac {\text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x}{\sqrt {a}+\sqrt {c} x^2}\right )}{8 \sqrt {2} a^{5/4} c^{3/4}} \] Output:

1/4*x^3/a/(c*x^4+a)+1/16*arctan(-1+2^(1/2)*c^(1/4)*x/a^(1/4))*2^(1/2)/a^(5 
/4)/c^(3/4)+1/16*arctan(1+2^(1/2)*c^(1/4)*x/a^(1/4))*2^(1/2)/a^(5/4)/c^(3/ 
4)-1/16*arctanh(2^(1/2)*a^(1/4)*c^(1/4)*x/(a^(1/2)+c^(1/2)*x^2))*2^(1/2)/a 
^(5/4)/c^(3/4)
 

Mathematica [A] (verified)

Time = 0.07 (sec) , antiderivative size = 184, normalized size of antiderivative = 1.20 \[ \int \frac {x^2}{\left (a+c x^4\right )^2} \, dx=\frac {\frac {8 \sqrt [4]{a} x^3}{a+c x^4}-\frac {2 \sqrt {2} \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{c^{3/4}}+\frac {2 \sqrt {2} \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{c^{3/4}}+\frac {\sqrt {2} \log \left (\sqrt {a}-\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {c} x^2\right )}{c^{3/4}}-\frac {\sqrt {2} \log \left (\sqrt {a}+\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {c} x^2\right )}{c^{3/4}}}{32 a^{5/4}} \] Input:

Integrate[x^2/(a + c*x^4)^2,x]
 

Output:

((8*a^(1/4)*x^3)/(a + c*x^4) - (2*Sqrt[2]*ArcTan[1 - (Sqrt[2]*c^(1/4)*x)/a 
^(1/4)])/c^(3/4) + (2*Sqrt[2]*ArcTan[1 + (Sqrt[2]*c^(1/4)*x)/a^(1/4)])/c^( 
3/4) + (Sqrt[2]*Log[Sqrt[a] - Sqrt[2]*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^2])/c^ 
(3/4) - (Sqrt[2]*Log[Sqrt[a] + Sqrt[2]*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^2])/c 
^(3/4))/(32*a^(5/4))
 

Rubi [A] (verified)

Time = 0.67 (sec) , antiderivative size = 227, normalized size of antiderivative = 1.48, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.692, Rules used = {819, 826, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^2}{\left (a+c x^4\right )^2} \, dx\)

\(\Big \downarrow \) 819

\(\displaystyle \frac {\int \frac {x^2}{c x^4+a}dx}{4 a}+\frac {x^3}{4 a \left (a+c x^4\right )}\)

\(\Big \downarrow \) 826

\(\displaystyle \frac {\frac {\int \frac {\sqrt {c} x^2+\sqrt {a}}{c x^4+a}dx}{2 \sqrt {c}}-\frac {\int \frac {\sqrt {a}-\sqrt {c} x^2}{c x^4+a}dx}{2 \sqrt {c}}}{4 a}+\frac {x^3}{4 a \left (a+c x^4\right )}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {\frac {\frac {\int \frac {1}{x^2-\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}+\frac {\sqrt {a}}{\sqrt {c}}}dx}{2 \sqrt {c}}+\frac {\int \frac {1}{x^2+\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}+\frac {\sqrt {a}}{\sqrt {c}}}dx}{2 \sqrt {c}}}{2 \sqrt {c}}-\frac {\int \frac {\sqrt {a}-\sqrt {c} x^2}{c x^4+a}dx}{2 \sqrt {c}}}{4 a}+\frac {x^3}{4 a \left (a+c x^4\right )}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {\frac {\frac {\int \frac {1}{-\left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )^2-1}d\left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}-\frac {\int \frac {1}{-\left (\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )^2-1}d\left (\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}}{2 \sqrt {c}}-\frac {\int \frac {\sqrt {a}-\sqrt {c} x^2}{c x^4+a}dx}{2 \sqrt {c}}}{4 a}+\frac {x^3}{4 a \left (a+c x^4\right )}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}}{2 \sqrt {c}}-\frac {\int \frac {\sqrt {a}-\sqrt {c} x^2}{c x^4+a}dx}{2 \sqrt {c}}}{4 a}+\frac {x^3}{4 a \left (a+c x^4\right )}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}}{2 \sqrt {c}}-\frac {-\frac {\int -\frac {\sqrt {2} \sqrt [4]{a}-2 \sqrt [4]{c} x}{\sqrt [4]{c} \left (x^2-\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}+\frac {\sqrt {a}}{\sqrt {c}}\right )}dx}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {2} \sqrt [4]{c} x+\sqrt [4]{a}\right )}{\sqrt [4]{c} \left (x^2+\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}+\frac {\sqrt {a}}{\sqrt {c}}\right )}dx}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}}{2 \sqrt {c}}}{4 a}+\frac {x^3}{4 a \left (a+c x^4\right )}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}}{2 \sqrt {c}}-\frac {\frac {\int \frac {\sqrt {2} \sqrt [4]{a}-2 \sqrt [4]{c} x}{\sqrt [4]{c} \left (x^2-\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}+\frac {\sqrt {a}}{\sqrt {c}}\right )}dx}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {2} \sqrt [4]{c} x+\sqrt [4]{a}\right )}{\sqrt [4]{c} \left (x^2+\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}+\frac {\sqrt {a}}{\sqrt {c}}\right )}dx}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}}{2 \sqrt {c}}}{4 a}+\frac {x^3}{4 a \left (a+c x^4\right )}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}}{2 \sqrt {c}}-\frac {\frac {\int \frac {\sqrt {2} \sqrt [4]{a}-2 \sqrt [4]{c} x}{x^2-\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}+\frac {\sqrt {a}}{\sqrt {c}}}dx}{2 \sqrt {2} \sqrt [4]{a} \sqrt {c}}+\frac {\int \frac {\sqrt {2} \sqrt [4]{c} x+\sqrt [4]{a}}{x^2+\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}+\frac {\sqrt {a}}{\sqrt {c}}}dx}{2 \sqrt [4]{a} \sqrt {c}}}{2 \sqrt {c}}}{4 a}+\frac {x^3}{4 a \left (a+c x^4\right )}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}}{2 \sqrt {c}}-\frac {\frac {\log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {a}+\sqrt {c} x^2\right )}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}-\frac {\log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {a}+\sqrt {c} x^2\right )}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}}{2 \sqrt {c}}}{4 a}+\frac {x^3}{4 a \left (a+c x^4\right )}\)

Input:

Int[x^2/(a + c*x^4)^2,x]
 

Output:

x^3/(4*a*(a + c*x^4)) + ((-(ArcTan[1 - (Sqrt[2]*c^(1/4)*x)/a^(1/4)]/(Sqrt[ 
2]*a^(1/4)*c^(1/4))) + ArcTan[1 + (Sqrt[2]*c^(1/4)*x)/a^(1/4)]/(Sqrt[2]*a^ 
(1/4)*c^(1/4)))/(2*Sqrt[c]) - (-1/2*Log[Sqrt[a] - Sqrt[2]*a^(1/4)*c^(1/4)* 
x + Sqrt[c]*x^2]/(Sqrt[2]*a^(1/4)*c^(1/4)) + Log[Sqrt[a] + Sqrt[2]*a^(1/4) 
*c^(1/4)*x + Sqrt[c]*x^2]/(2*Sqrt[2]*a^(1/4)*c^(1/4)))/(2*Sqrt[c]))/(4*a)
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 819
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(-( 
c*x)^(m + 1))*((a + b*x^n)^(p + 1)/(a*c*n*(p + 1))), x] + Simp[(m + n*(p + 
1) + 1)/(a*n*(p + 1))   Int[(c*x)^m*(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a 
, b, c, m}, x] && IGtQ[n, 0] && LtQ[p, -1] && IntBinomialQ[a, b, c, n, m, p 
, x]
 

rule 826
Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 
2]], s = Denominator[Rt[a/b, 2]]}, Simp[1/(2*s)   Int[(r + s*x^2)/(a + b*x^ 
4), x], x] - Simp[1/(2*s)   Int[(r - s*x^2)/(a + b*x^4), x], x]] /; FreeQ[{ 
a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] 
 && AtomQ[SplitProduct[SumBaseQ, b]]))
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.49 (sec) , antiderivative size = 48, normalized size of antiderivative = 0.31

method result size
risch \(\frac {x^{3}}{4 a \left (c \,x^{4}+a \right )}+\frac {\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{4} c +a \right )}{\sum }\frac {\ln \left (x -\textit {\_R} \right )}{\textit {\_R}}}{16 a c}\) \(48\)
default \(\frac {x^{3}}{4 a \left (c \,x^{4}+a \right )}+\frac {\sqrt {2}\, \left (\ln \left (\frac {x^{2}-\left (\frac {a}{c}\right )^{\frac {1}{4}} x \sqrt {2}+\sqrt {\frac {a}{c}}}{x^{2}+\left (\frac {a}{c}\right )^{\frac {1}{4}} x \sqrt {2}+\sqrt {\frac {a}{c}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{c}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{c}\right )^{\frac {1}{4}}}-1\right )\right )}{32 a c \left (\frac {a}{c}\right )^{\frac {1}{4}}}\) \(123\)

Input:

int(x^2/(c*x^4+a)^2,x,method=_RETURNVERBOSE)
 

Output:

1/4*x^3/a/(c*x^4+a)+1/16/a/c*sum(1/_R*ln(x-_R),_R=RootOf(_Z^4*c+a))
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.08 (sec) , antiderivative size = 196, normalized size of antiderivative = 1.28 \[ \int \frac {x^2}{\left (a+c x^4\right )^2} \, dx=\frac {4 \, x^{3} + {\left (a c x^{4} + a^{2}\right )} \left (-\frac {1}{a^{5} c^{3}}\right )^{\frac {1}{4}} \log \left (a^{4} c^{2} \left (-\frac {1}{a^{5} c^{3}}\right )^{\frac {3}{4}} + x\right ) - {\left (i \, a c x^{4} + i \, a^{2}\right )} \left (-\frac {1}{a^{5} c^{3}}\right )^{\frac {1}{4}} \log \left (i \, a^{4} c^{2} \left (-\frac {1}{a^{5} c^{3}}\right )^{\frac {3}{4}} + x\right ) - {\left (-i \, a c x^{4} - i \, a^{2}\right )} \left (-\frac {1}{a^{5} c^{3}}\right )^{\frac {1}{4}} \log \left (-i \, a^{4} c^{2} \left (-\frac {1}{a^{5} c^{3}}\right )^{\frac {3}{4}} + x\right ) - {\left (a c x^{4} + a^{2}\right )} \left (-\frac {1}{a^{5} c^{3}}\right )^{\frac {1}{4}} \log \left (-a^{4} c^{2} \left (-\frac {1}{a^{5} c^{3}}\right )^{\frac {3}{4}} + x\right )}{16 \, {\left (a c x^{4} + a^{2}\right )}} \] Input:

integrate(x^2/(c*x^4+a)^2,x, algorithm="fricas")
 

Output:

1/16*(4*x^3 + (a*c*x^4 + a^2)*(-1/(a^5*c^3))^(1/4)*log(a^4*c^2*(-1/(a^5*c^ 
3))^(3/4) + x) - (I*a*c*x^4 + I*a^2)*(-1/(a^5*c^3))^(1/4)*log(I*a^4*c^2*(- 
1/(a^5*c^3))^(3/4) + x) - (-I*a*c*x^4 - I*a^2)*(-1/(a^5*c^3))^(1/4)*log(-I 
*a^4*c^2*(-1/(a^5*c^3))^(3/4) + x) - (a*c*x^4 + a^2)*(-1/(a^5*c^3))^(1/4)* 
log(-a^4*c^2*(-1/(a^5*c^3))^(3/4) + x))/(a*c*x^4 + a^2)
 

Sympy [A] (verification not implemented)

Time = 0.14 (sec) , antiderivative size = 46, normalized size of antiderivative = 0.30 \[ \int \frac {x^2}{\left (a+c x^4\right )^2} \, dx=\frac {x^{3}}{4 a^{2} + 4 a c x^{4}} + \operatorname {RootSum} {\left (65536 t^{4} a^{5} c^{3} + 1, \left ( t \mapsto t \log {\left (4096 t^{3} a^{4} c^{2} + x \right )} \right )\right )} \] Input:

integrate(x**2/(c*x**4+a)**2,x)
 

Output:

x**3/(4*a**2 + 4*a*c*x**4) + RootSum(65536*_t**4*a**5*c**3 + 1, Lambda(_t, 
 _t*log(4096*_t**3*a**4*c**2 + x)))
 

Maxima [A] (verification not implemented)

Time = 0.13 (sec) , antiderivative size = 191, normalized size of antiderivative = 1.25 \[ \int \frac {x^2}{\left (a+c x^4\right )^2} \, dx=\frac {x^{3}}{4 \, {\left (a c x^{4} + a^{2}\right )}} + \frac {\frac {2 \, \sqrt {2} \arctan \left (\frac {\sqrt {2} {\left (2 \, \sqrt {c} x + \sqrt {2} a^{\frac {1}{4}} c^{\frac {1}{4}}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {c}}}\right )}{\sqrt {\sqrt {a} \sqrt {c}} \sqrt {c}} + \frac {2 \, \sqrt {2} \arctan \left (\frac {\sqrt {2} {\left (2 \, \sqrt {c} x - \sqrt {2} a^{\frac {1}{4}} c^{\frac {1}{4}}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {c}}}\right )}{\sqrt {\sqrt {a} \sqrt {c}} \sqrt {c}} - \frac {\sqrt {2} \log \left (\sqrt {c} x^{2} + \sqrt {2} a^{\frac {1}{4}} c^{\frac {1}{4}} x + \sqrt {a}\right )}{a^{\frac {1}{4}} c^{\frac {3}{4}}} + \frac {\sqrt {2} \log \left (\sqrt {c} x^{2} - \sqrt {2} a^{\frac {1}{4}} c^{\frac {1}{4}} x + \sqrt {a}\right )}{a^{\frac {1}{4}} c^{\frac {3}{4}}}}{32 \, a} \] Input:

integrate(x^2/(c*x^4+a)^2,x, algorithm="maxima")
 

Output:

1/4*x^3/(a*c*x^4 + a^2) + 1/32*(2*sqrt(2)*arctan(1/2*sqrt(2)*(2*sqrt(c)*x 
+ sqrt(2)*a^(1/4)*c^(1/4))/sqrt(sqrt(a)*sqrt(c)))/(sqrt(sqrt(a)*sqrt(c))*s 
qrt(c)) + 2*sqrt(2)*arctan(1/2*sqrt(2)*(2*sqrt(c)*x - sqrt(2)*a^(1/4)*c^(1 
/4))/sqrt(sqrt(a)*sqrt(c)))/(sqrt(sqrt(a)*sqrt(c))*sqrt(c)) - sqrt(2)*log( 
sqrt(c)*x^2 + sqrt(2)*a^(1/4)*c^(1/4)*x + sqrt(a))/(a^(1/4)*c^(3/4)) + sqr 
t(2)*log(sqrt(c)*x^2 - sqrt(2)*a^(1/4)*c^(1/4)*x + sqrt(a))/(a^(1/4)*c^(3/ 
4)))/a
 

Giac [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 196, normalized size of antiderivative = 1.28 \[ \int \frac {x^2}{\left (a+c x^4\right )^2} \, dx=\frac {x^{3}}{4 \, {\left (c x^{4} + a\right )} a} + \frac {\sqrt {2} \left (a c^{3}\right )^{\frac {3}{4}} \arctan \left (\frac {\sqrt {2} {\left (2 \, x + \sqrt {2} \left (\frac {a}{c}\right )^{\frac {1}{4}}\right )}}{2 \, \left (\frac {a}{c}\right )^{\frac {1}{4}}}\right )}{16 \, a^{2} c^{3}} + \frac {\sqrt {2} \left (a c^{3}\right )^{\frac {3}{4}} \arctan \left (\frac {\sqrt {2} {\left (2 \, x - \sqrt {2} \left (\frac {a}{c}\right )^{\frac {1}{4}}\right )}}{2 \, \left (\frac {a}{c}\right )^{\frac {1}{4}}}\right )}{16 \, a^{2} c^{3}} - \frac {\sqrt {2} \left (a c^{3}\right )^{\frac {3}{4}} \log \left (x^{2} + \sqrt {2} x \left (\frac {a}{c}\right )^{\frac {1}{4}} + \sqrt {\frac {a}{c}}\right )}{32 \, a^{2} c^{3}} + \frac {\sqrt {2} \left (a c^{3}\right )^{\frac {3}{4}} \log \left (x^{2} - \sqrt {2} x \left (\frac {a}{c}\right )^{\frac {1}{4}} + \sqrt {\frac {a}{c}}\right )}{32 \, a^{2} c^{3}} \] Input:

integrate(x^2/(c*x^4+a)^2,x, algorithm="giac")
 

Output:

1/4*x^3/((c*x^4 + a)*a) + 1/16*sqrt(2)*(a*c^3)^(3/4)*arctan(1/2*sqrt(2)*(2 
*x + sqrt(2)*(a/c)^(1/4))/(a/c)^(1/4))/(a^2*c^3) + 1/16*sqrt(2)*(a*c^3)^(3 
/4)*arctan(1/2*sqrt(2)*(2*x - sqrt(2)*(a/c)^(1/4))/(a/c)^(1/4))/(a^2*c^3) 
- 1/32*sqrt(2)*(a*c^3)^(3/4)*log(x^2 + sqrt(2)*x*(a/c)^(1/4) + sqrt(a/c))/ 
(a^2*c^3) + 1/32*sqrt(2)*(a*c^3)^(3/4)*log(x^2 - sqrt(2)*x*(a/c)^(1/4) + s 
qrt(a/c))/(a^2*c^3)
 

Mupad [B] (verification not implemented)

Time = 0.13 (sec) , antiderivative size = 60, normalized size of antiderivative = 0.39 \[ \int \frac {x^2}{\left (a+c x^4\right )^2} \, dx=\frac {\mathrm {atanh}\left (\frac {c^{1/4}\,x}{{\left (-a\right )}^{1/4}}\right )}{8\,{\left (-a\right )}^{5/4}\,c^{3/4}}-\frac {\mathrm {atan}\left (\frac {c^{1/4}\,x}{{\left (-a\right )}^{1/4}}\right )}{8\,{\left (-a\right )}^{5/4}\,c^{3/4}}+\frac {x^3}{4\,a\,\left (c\,x^4+a\right )} \] Input:

int(x^2/(a + c*x^4)^2,x)
 

Output:

atanh((c^(1/4)*x)/(-a)^(1/4))/(8*(-a)^(5/4)*c^(3/4)) - atan((c^(1/4)*x)/(- 
a)^(1/4))/(8*(-a)^(5/4)*c^(3/4)) + x^3/(4*a*(a + c*x^4))
 

Reduce [B] (verification not implemented)

Time = 0.22 (sec) , antiderivative size = 305, normalized size of antiderivative = 1.99 \[ \int \frac {x^2}{\left (a+c x^4\right )^2} \, dx=\frac {-2 c^{\frac {1}{4}} a^{\frac {7}{4}} \sqrt {2}\, \mathit {atan} \left (\frac {c^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}-2 \sqrt {c}\, x}{c^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}}\right )-2 c^{\frac {5}{4}} a^{\frac {3}{4}} \sqrt {2}\, \mathit {atan} \left (\frac {c^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}-2 \sqrt {c}\, x}{c^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}}\right ) x^{4}+2 c^{\frac {1}{4}} a^{\frac {7}{4}} \sqrt {2}\, \mathit {atan} \left (\frac {c^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}+2 \sqrt {c}\, x}{c^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}}\right )+2 c^{\frac {5}{4}} a^{\frac {3}{4}} \sqrt {2}\, \mathit {atan} \left (\frac {c^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}+2 \sqrt {c}\, x}{c^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}}\right ) x^{4}+c^{\frac {1}{4}} a^{\frac {7}{4}} \sqrt {2}\, \mathrm {log}\left (-c^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}\, x +\sqrt {a}+\sqrt {c}\, x^{2}\right )+c^{\frac {5}{4}} a^{\frac {3}{4}} \sqrt {2}\, \mathrm {log}\left (-c^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}\, x +\sqrt {a}+\sqrt {c}\, x^{2}\right ) x^{4}-c^{\frac {1}{4}} a^{\frac {7}{4}} \sqrt {2}\, \mathrm {log}\left (c^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}\, x +\sqrt {a}+\sqrt {c}\, x^{2}\right )-c^{\frac {5}{4}} a^{\frac {3}{4}} \sqrt {2}\, \mathrm {log}\left (c^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}\, x +\sqrt {a}+\sqrt {c}\, x^{2}\right ) x^{4}+8 a c \,x^{3}}{32 a^{2} c \left (c \,x^{4}+a \right )} \] Input:

int(x^2/(c*x^4+a)^2,x)
 

Output:

( - 2*c**(1/4)*a**(3/4)*sqrt(2)*atan((c**(1/4)*a**(1/4)*sqrt(2) - 2*sqrt(c 
)*x)/(c**(1/4)*a**(1/4)*sqrt(2)))*a - 2*c**(1/4)*a**(3/4)*sqrt(2)*atan((c* 
*(1/4)*a**(1/4)*sqrt(2) - 2*sqrt(c)*x)/(c**(1/4)*a**(1/4)*sqrt(2)))*c*x**4 
 + 2*c**(1/4)*a**(3/4)*sqrt(2)*atan((c**(1/4)*a**(1/4)*sqrt(2) + 2*sqrt(c) 
*x)/(c**(1/4)*a**(1/4)*sqrt(2)))*a + 2*c**(1/4)*a**(3/4)*sqrt(2)*atan((c** 
(1/4)*a**(1/4)*sqrt(2) + 2*sqrt(c)*x)/(c**(1/4)*a**(1/4)*sqrt(2)))*c*x**4 
+ c**(1/4)*a**(3/4)*sqrt(2)*log( - c**(1/4)*a**(1/4)*sqrt(2)*x + sqrt(a) + 
 sqrt(c)*x**2)*a + c**(1/4)*a**(3/4)*sqrt(2)*log( - c**(1/4)*a**(1/4)*sqrt 
(2)*x + sqrt(a) + sqrt(c)*x**2)*c*x**4 - c**(1/4)*a**(3/4)*sqrt(2)*log(c** 
(1/4)*a**(1/4)*sqrt(2)*x + sqrt(a) + sqrt(c)*x**2)*a - c**(1/4)*a**(3/4)*s 
qrt(2)*log(c**(1/4)*a**(1/4)*sqrt(2)*x + sqrt(a) + sqrt(c)*x**2)*c*x**4 + 
8*a*c*x**3)/(32*a**2*c*(a + c*x**4))