\(\int \frac {x^{10}}{(a+c x^4)^3} \, dx\) [96]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [C] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 13, antiderivative size = 172 \[ \int \frac {x^{10}}{\left (a+c x^4\right )^3} \, dx=-\frac {x^7}{8 c \left (a+c x^4\right )^2}-\frac {7 x^3}{32 c^2 \left (a+c x^4\right )}-\frac {21 \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{64 \sqrt {2} \sqrt [4]{a} c^{11/4}}+\frac {21 \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{64 \sqrt {2} \sqrt [4]{a} c^{11/4}}-\frac {21 \text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x}{\sqrt {a}+\sqrt {c} x^2}\right )}{64 \sqrt {2} \sqrt [4]{a} c^{11/4}} \] Output:

-1/8*x^7/c/(c*x^4+a)^2-7/32*x^3/c^2/(c*x^4+a)+21/128*arctan(-1+2^(1/2)*c^( 
1/4)*x/a^(1/4))*2^(1/2)/a^(1/4)/c^(11/4)+21/128*arctan(1+2^(1/2)*c^(1/4)*x 
/a^(1/4))*2^(1/2)/a^(1/4)/c^(11/4)-21/128*arctanh(2^(1/2)*a^(1/4)*c^(1/4)* 
x/(a^(1/2)+c^(1/2)*x^2))*2^(1/2)/a^(1/4)/c^(11/4)
 

Mathematica [A] (verified)

Time = 0.07 (sec) , antiderivative size = 205, normalized size of antiderivative = 1.19 \[ \int \frac {x^{10}}{\left (a+c x^4\right )^3} \, dx=\frac {\frac {32 a c^{3/4} x^3}{\left (a+c x^4\right )^2}-\frac {88 c^{3/4} x^3}{a+c x^4}-\frac {42 \sqrt {2} \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{\sqrt [4]{a}}+\frac {42 \sqrt {2} \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{\sqrt [4]{a}}+\frac {21 \sqrt {2} \log \left (\sqrt {a}-\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {c} x^2\right )}{\sqrt [4]{a}}-\frac {21 \sqrt {2} \log \left (\sqrt {a}+\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {c} x^2\right )}{\sqrt [4]{a}}}{256 c^{11/4}} \] Input:

Integrate[x^10/(a + c*x^4)^3,x]
 

Output:

((32*a*c^(3/4)*x^3)/(a + c*x^4)^2 - (88*c^(3/4)*x^3)/(a + c*x^4) - (42*Sqr 
t[2]*ArcTan[1 - (Sqrt[2]*c^(1/4)*x)/a^(1/4)])/a^(1/4) + (42*Sqrt[2]*ArcTan 
[1 + (Sqrt[2]*c^(1/4)*x)/a^(1/4)])/a^(1/4) + (21*Sqrt[2]*Log[Sqrt[a] - Sqr 
t[2]*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^2])/a^(1/4) - (21*Sqrt[2]*Log[Sqrt[a] + 
 Sqrt[2]*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^2])/a^(1/4))/(256*c^(11/4))
 

Rubi [A] (verified)

Time = 0.74 (sec) , antiderivative size = 254, normalized size of antiderivative = 1.48, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.769, Rules used = {817, 817, 826, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^{10}}{\left (a+c x^4\right )^3} \, dx\)

\(\Big \downarrow \) 817

\(\displaystyle \frac {7 \int \frac {x^6}{\left (c x^4+a\right )^2}dx}{8 c}-\frac {x^7}{8 c \left (a+c x^4\right )^2}\)

\(\Big \downarrow \) 817

\(\displaystyle \frac {7 \left (\frac {3 \int \frac {x^2}{c x^4+a}dx}{4 c}-\frac {x^3}{4 c \left (a+c x^4\right )}\right )}{8 c}-\frac {x^7}{8 c \left (a+c x^4\right )^2}\)

\(\Big \downarrow \) 826

\(\displaystyle \frac {7 \left (\frac {3 \left (\frac {\int \frac {\sqrt {c} x^2+\sqrt {a}}{c x^4+a}dx}{2 \sqrt {c}}-\frac {\int \frac {\sqrt {a}-\sqrt {c} x^2}{c x^4+a}dx}{2 \sqrt {c}}\right )}{4 c}-\frac {x^3}{4 c \left (a+c x^4\right )}\right )}{8 c}-\frac {x^7}{8 c \left (a+c x^4\right )^2}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {7 \left (\frac {3 \left (\frac {\frac {\int \frac {1}{x^2-\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}+\frac {\sqrt {a}}{\sqrt {c}}}dx}{2 \sqrt {c}}+\frac {\int \frac {1}{x^2+\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}+\frac {\sqrt {a}}{\sqrt {c}}}dx}{2 \sqrt {c}}}{2 \sqrt {c}}-\frac {\int \frac {\sqrt {a}-\sqrt {c} x^2}{c x^4+a}dx}{2 \sqrt {c}}\right )}{4 c}-\frac {x^3}{4 c \left (a+c x^4\right )}\right )}{8 c}-\frac {x^7}{8 c \left (a+c x^4\right )^2}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {7 \left (\frac {3 \left (\frac {\frac {\int \frac {1}{-\left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )^2-1}d\left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}-\frac {\int \frac {1}{-\left (\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )^2-1}d\left (\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}}{2 \sqrt {c}}-\frac {\int \frac {\sqrt {a}-\sqrt {c} x^2}{c x^4+a}dx}{2 \sqrt {c}}\right )}{4 c}-\frac {x^3}{4 c \left (a+c x^4\right )}\right )}{8 c}-\frac {x^7}{8 c \left (a+c x^4\right )^2}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {7 \left (\frac {3 \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}}{2 \sqrt {c}}-\frac {\int \frac {\sqrt {a}-\sqrt {c} x^2}{c x^4+a}dx}{2 \sqrt {c}}\right )}{4 c}-\frac {x^3}{4 c \left (a+c x^4\right )}\right )}{8 c}-\frac {x^7}{8 c \left (a+c x^4\right )^2}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {7 \left (\frac {3 \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}}{2 \sqrt {c}}-\frac {-\frac {\int -\frac {\sqrt {2} \sqrt [4]{a}-2 \sqrt [4]{c} x}{\sqrt [4]{c} \left (x^2-\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}+\frac {\sqrt {a}}{\sqrt {c}}\right )}dx}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {2} \sqrt [4]{c} x+\sqrt [4]{a}\right )}{\sqrt [4]{c} \left (x^2+\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}+\frac {\sqrt {a}}{\sqrt {c}}\right )}dx}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}}{2 \sqrt {c}}\right )}{4 c}-\frac {x^3}{4 c \left (a+c x^4\right )}\right )}{8 c}-\frac {x^7}{8 c \left (a+c x^4\right )^2}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {7 \left (\frac {3 \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}}{2 \sqrt {c}}-\frac {\frac {\int \frac {\sqrt {2} \sqrt [4]{a}-2 \sqrt [4]{c} x}{\sqrt [4]{c} \left (x^2-\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}+\frac {\sqrt {a}}{\sqrt {c}}\right )}dx}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {2} \sqrt [4]{c} x+\sqrt [4]{a}\right )}{\sqrt [4]{c} \left (x^2+\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}+\frac {\sqrt {a}}{\sqrt {c}}\right )}dx}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}}{2 \sqrt {c}}\right )}{4 c}-\frac {x^3}{4 c \left (a+c x^4\right )}\right )}{8 c}-\frac {x^7}{8 c \left (a+c x^4\right )^2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {7 \left (\frac {3 \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}}{2 \sqrt {c}}-\frac {\frac {\int \frac {\sqrt {2} \sqrt [4]{a}-2 \sqrt [4]{c} x}{x^2-\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}+\frac {\sqrt {a}}{\sqrt {c}}}dx}{2 \sqrt {2} \sqrt [4]{a} \sqrt {c}}+\frac {\int \frac {\sqrt {2} \sqrt [4]{c} x+\sqrt [4]{a}}{x^2+\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}+\frac {\sqrt {a}}{\sqrt {c}}}dx}{2 \sqrt [4]{a} \sqrt {c}}}{2 \sqrt {c}}\right )}{4 c}-\frac {x^3}{4 c \left (a+c x^4\right )}\right )}{8 c}-\frac {x^7}{8 c \left (a+c x^4\right )^2}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {7 \left (\frac {3 \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}}{2 \sqrt {c}}-\frac {\frac {\log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {a}+\sqrt {c} x^2\right )}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}-\frac {\log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {a}+\sqrt {c} x^2\right )}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}}{2 \sqrt {c}}\right )}{4 c}-\frac {x^3}{4 c \left (a+c x^4\right )}\right )}{8 c}-\frac {x^7}{8 c \left (a+c x^4\right )^2}\)

Input:

Int[x^10/(a + c*x^4)^3,x]
 

Output:

-1/8*x^7/(c*(a + c*x^4)^2) + (7*(-1/4*x^3/(c*(a + c*x^4)) + (3*((-(ArcTan[ 
1 - (Sqrt[2]*c^(1/4)*x)/a^(1/4)]/(Sqrt[2]*a^(1/4)*c^(1/4))) + ArcTan[1 + ( 
Sqrt[2]*c^(1/4)*x)/a^(1/4)]/(Sqrt[2]*a^(1/4)*c^(1/4)))/(2*Sqrt[c]) - (-1/2 
*Log[Sqrt[a] - Sqrt[2]*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^2]/(Sqrt[2]*a^(1/4)*c 
^(1/4)) + Log[Sqrt[a] + Sqrt[2]*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^2]/(2*Sqrt[2 
]*a^(1/4)*c^(1/4)))/(2*Sqrt[c])))/(4*c)))/(8*c)
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 817
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^( 
n - 1)*(c*x)^(m - n + 1)*((a + b*x^n)^(p + 1)/(b*n*(p + 1))), x] - Simp[c^n 
*((m - n + 1)/(b*n*(p + 1)))   Int[(c*x)^(m - n)*(a + b*x^n)^(p + 1), x], x 
] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m + 1, n] &&  ! 
ILtQ[(m + n*(p + 1) + 1)/n, 0] && IntBinomialQ[a, b, c, n, m, p, x]
 

rule 826
Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 
2]], s = Denominator[Rt[a/b, 2]]}, Simp[1/(2*s)   Int[(r + s*x^2)/(a + b*x^ 
4), x], x] - Simp[1/(2*s)   Int[(r - s*x^2)/(a + b*x^4), x], x]] /; FreeQ[{ 
a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] 
 && AtomQ[SplitProduct[SumBaseQ, b]]))
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.49 (sec) , antiderivative size = 56, normalized size of antiderivative = 0.33

method result size
risch \(\frac {-\frac {11 x^{7}}{32 c}-\frac {7 a \,x^{3}}{32 c^{2}}}{\left (c \,x^{4}+a \right )^{2}}+\frac {21 \left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{4} c +a \right )}{\sum }\frac {\ln \left (x -\textit {\_R} \right )}{\textit {\_R}}\right )}{128 c^{3}}\) \(56\)
default \(\frac {-\frac {11 x^{7}}{32 c}-\frac {7 a \,x^{3}}{32 c^{2}}}{\left (c \,x^{4}+a \right )^{2}}+\frac {21 \sqrt {2}\, \left (\ln \left (\frac {x^{2}-\left (\frac {a}{c}\right )^{\frac {1}{4}} x \sqrt {2}+\sqrt {\frac {a}{c}}}{x^{2}+\left (\frac {a}{c}\right )^{\frac {1}{4}} x \sqrt {2}+\sqrt {\frac {a}{c}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{c}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{c}\right )^{\frac {1}{4}}}-1\right )\right )}{256 c^{3} \left (\frac {a}{c}\right )^{\frac {1}{4}}}\) \(131\)

Input:

int(x^10/(c*x^4+a)^3,x,method=_RETURNVERBOSE)
 

Output:

(-11/32/c*x^7-7/32/c^2*a*x^3)/(c*x^4+a)^2+21/128/c^3*sum(1/_R*ln(x-_R),_R= 
RootOf(_Z^4*c+a))
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.08 (sec) , antiderivative size = 264, normalized size of antiderivative = 1.53 \[ \int \frac {x^{10}}{\left (a+c x^4\right )^3} \, dx=-\frac {44 \, c x^{7} + 28 \, a x^{3} - 21 \, {\left (c^{4} x^{8} + 2 \, a c^{3} x^{4} + a^{2} c^{2}\right )} \left (-\frac {1}{a c^{11}}\right )^{\frac {1}{4}} \log \left (a c^{8} \left (-\frac {1}{a c^{11}}\right )^{\frac {3}{4}} + x\right ) + 21 \, {\left (i \, c^{4} x^{8} + 2 i \, a c^{3} x^{4} + i \, a^{2} c^{2}\right )} \left (-\frac {1}{a c^{11}}\right )^{\frac {1}{4}} \log \left (i \, a c^{8} \left (-\frac {1}{a c^{11}}\right )^{\frac {3}{4}} + x\right ) + 21 \, {\left (-i \, c^{4} x^{8} - 2 i \, a c^{3} x^{4} - i \, a^{2} c^{2}\right )} \left (-\frac {1}{a c^{11}}\right )^{\frac {1}{4}} \log \left (-i \, a c^{8} \left (-\frac {1}{a c^{11}}\right )^{\frac {3}{4}} + x\right ) + 21 \, {\left (c^{4} x^{8} + 2 \, a c^{3} x^{4} + a^{2} c^{2}\right )} \left (-\frac {1}{a c^{11}}\right )^{\frac {1}{4}} \log \left (-a c^{8} \left (-\frac {1}{a c^{11}}\right )^{\frac {3}{4}} + x\right )}{128 \, {\left (c^{4} x^{8} + 2 \, a c^{3} x^{4} + a^{2} c^{2}\right )}} \] Input:

integrate(x^10/(c*x^4+a)^3,x, algorithm="fricas")
 

Output:

-1/128*(44*c*x^7 + 28*a*x^3 - 21*(c^4*x^8 + 2*a*c^3*x^4 + a^2*c^2)*(-1/(a* 
c^11))^(1/4)*log(a*c^8*(-1/(a*c^11))^(3/4) + x) + 21*(I*c^4*x^8 + 2*I*a*c^ 
3*x^4 + I*a^2*c^2)*(-1/(a*c^11))^(1/4)*log(I*a*c^8*(-1/(a*c^11))^(3/4) + x 
) + 21*(-I*c^4*x^8 - 2*I*a*c^3*x^4 - I*a^2*c^2)*(-1/(a*c^11))^(1/4)*log(-I 
*a*c^8*(-1/(a*c^11))^(3/4) + x) + 21*(c^4*x^8 + 2*a*c^3*x^4 + a^2*c^2)*(-1 
/(a*c^11))^(1/4)*log(-a*c^8*(-1/(a*c^11))^(3/4) + x))/(c^4*x^8 + 2*a*c^3*x 
^4 + a^2*c^2)
 

Sympy [A] (verification not implemented)

Time = 0.27 (sec) , antiderivative size = 70, normalized size of antiderivative = 0.41 \[ \int \frac {x^{10}}{\left (a+c x^4\right )^3} \, dx=\frac {- 7 a x^{3} - 11 c x^{7}}{32 a^{2} c^{2} + 64 a c^{3} x^{4} + 32 c^{4} x^{8}} + \operatorname {RootSum} {\left (268435456 t^{4} a c^{11} + 194481, \left ( t \mapsto t \log {\left (\frac {2097152 t^{3} a c^{8}}{9261} + x \right )} \right )\right )} \] Input:

integrate(x**10/(c*x**4+a)**3,x)
 

Output:

(-7*a*x**3 - 11*c*x**7)/(32*a**2*c**2 + 64*a*c**3*x**4 + 32*c**4*x**8) + R 
ootSum(268435456*_t**4*a*c**11 + 194481, Lambda(_t, _t*log(2097152*_t**3*a 
*c**8/9261 + x)))
 

Maxima [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 215, normalized size of antiderivative = 1.25 \[ \int \frac {x^{10}}{\left (a+c x^4\right )^3} \, dx=-\frac {11 \, c x^{7} + 7 \, a x^{3}}{32 \, {\left (c^{4} x^{8} + 2 \, a c^{3} x^{4} + a^{2} c^{2}\right )}} + \frac {21 \, {\left (\frac {2 \, \sqrt {2} \arctan \left (\frac {\sqrt {2} {\left (2 \, \sqrt {c} x + \sqrt {2} a^{\frac {1}{4}} c^{\frac {1}{4}}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {c}}}\right )}{\sqrt {\sqrt {a} \sqrt {c}} \sqrt {c}} + \frac {2 \, \sqrt {2} \arctan \left (\frac {\sqrt {2} {\left (2 \, \sqrt {c} x - \sqrt {2} a^{\frac {1}{4}} c^{\frac {1}{4}}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {c}}}\right )}{\sqrt {\sqrt {a} \sqrt {c}} \sqrt {c}} - \frac {\sqrt {2} \log \left (\sqrt {c} x^{2} + \sqrt {2} a^{\frac {1}{4}} c^{\frac {1}{4}} x + \sqrt {a}\right )}{a^{\frac {1}{4}} c^{\frac {3}{4}}} + \frac {\sqrt {2} \log \left (\sqrt {c} x^{2} - \sqrt {2} a^{\frac {1}{4}} c^{\frac {1}{4}} x + \sqrt {a}\right )}{a^{\frac {1}{4}} c^{\frac {3}{4}}}\right )}}{256 \, c^{2}} \] Input:

integrate(x^10/(c*x^4+a)^3,x, algorithm="maxima")
 

Output:

-1/32*(11*c*x^7 + 7*a*x^3)/(c^4*x^8 + 2*a*c^3*x^4 + a^2*c^2) + 21/256*(2*s 
qrt(2)*arctan(1/2*sqrt(2)*(2*sqrt(c)*x + sqrt(2)*a^(1/4)*c^(1/4))/sqrt(sqr 
t(a)*sqrt(c)))/(sqrt(sqrt(a)*sqrt(c))*sqrt(c)) + 2*sqrt(2)*arctan(1/2*sqrt 
(2)*(2*sqrt(c)*x - sqrt(2)*a^(1/4)*c^(1/4))/sqrt(sqrt(a)*sqrt(c)))/(sqrt(s 
qrt(a)*sqrt(c))*sqrt(c)) - sqrt(2)*log(sqrt(c)*x^2 + sqrt(2)*a^(1/4)*c^(1/ 
4)*x + sqrt(a))/(a^(1/4)*c^(3/4)) + sqrt(2)*log(sqrt(c)*x^2 - sqrt(2)*a^(1 
/4)*c^(1/4)*x + sqrt(a))/(a^(1/4)*c^(3/4)))/c^2
 

Giac [A] (verification not implemented)

Time = 0.13 (sec) , antiderivative size = 206, normalized size of antiderivative = 1.20 \[ \int \frac {x^{10}}{\left (a+c x^4\right )^3} \, dx=-\frac {11 \, c x^{7} + 7 \, a x^{3}}{32 \, {\left (c x^{4} + a\right )}^{2} c^{2}} + \frac {21 \, \sqrt {2} \left (a c^{3}\right )^{\frac {3}{4}} \arctan \left (\frac {\sqrt {2} {\left (2 \, x + \sqrt {2} \left (\frac {a}{c}\right )^{\frac {1}{4}}\right )}}{2 \, \left (\frac {a}{c}\right )^{\frac {1}{4}}}\right )}{128 \, a c^{5}} + \frac {21 \, \sqrt {2} \left (a c^{3}\right )^{\frac {3}{4}} \arctan \left (\frac {\sqrt {2} {\left (2 \, x - \sqrt {2} \left (\frac {a}{c}\right )^{\frac {1}{4}}\right )}}{2 \, \left (\frac {a}{c}\right )^{\frac {1}{4}}}\right )}{128 \, a c^{5}} - \frac {21 \, \sqrt {2} \left (a c^{3}\right )^{\frac {3}{4}} \log \left (x^{2} + \sqrt {2} x \left (\frac {a}{c}\right )^{\frac {1}{4}} + \sqrt {\frac {a}{c}}\right )}{256 \, a c^{5}} + \frac {21 \, \sqrt {2} \left (a c^{3}\right )^{\frac {3}{4}} \log \left (x^{2} - \sqrt {2} x \left (\frac {a}{c}\right )^{\frac {1}{4}} + \sqrt {\frac {a}{c}}\right )}{256 \, a c^{5}} \] Input:

integrate(x^10/(c*x^4+a)^3,x, algorithm="giac")
 

Output:

-1/32*(11*c*x^7 + 7*a*x^3)/((c*x^4 + a)^2*c^2) + 21/128*sqrt(2)*(a*c^3)^(3 
/4)*arctan(1/2*sqrt(2)*(2*x + sqrt(2)*(a/c)^(1/4))/(a/c)^(1/4))/(a*c^5) + 
21/128*sqrt(2)*(a*c^3)^(3/4)*arctan(1/2*sqrt(2)*(2*x - sqrt(2)*(a/c)^(1/4) 
)/(a/c)^(1/4))/(a*c^5) - 21/256*sqrt(2)*(a*c^3)^(3/4)*log(x^2 + sqrt(2)*x* 
(a/c)^(1/4) + sqrt(a/c))/(a*c^5) + 21/256*sqrt(2)*(a*c^3)^(3/4)*log(x^2 - 
sqrt(2)*x*(a/c)^(1/4) + sqrt(a/c))/(a*c^5)
 

Mupad [B] (verification not implemented)

Time = 0.24 (sec) , antiderivative size = 83, normalized size of antiderivative = 0.48 \[ \int \frac {x^{10}}{\left (a+c x^4\right )^3} \, dx=\frac {21\,\mathrm {atan}\left (\frac {c^{1/4}\,x}{{\left (-a\right )}^{1/4}}\right )}{64\,{\left (-a\right )}^{1/4}\,c^{11/4}}-\frac {\frac {11\,x^7}{32\,c}+\frac {7\,a\,x^3}{32\,c^2}}{a^2+2\,a\,c\,x^4+c^2\,x^8}-\frac {21\,\mathrm {atanh}\left (\frac {c^{1/4}\,x}{{\left (-a\right )}^{1/4}}\right )}{64\,{\left (-a\right )}^{1/4}\,c^{11/4}} \] Input:

int(x^10/(a + c*x^4)^3,x)
 

Output:

(21*atan((c^(1/4)*x)/(-a)^(1/4)))/(64*(-a)^(1/4)*c^(11/4)) - ((11*x^7)/(32 
*c) + (7*a*x^3)/(32*c^2))/(a^2 + c^2*x^8 + 2*a*c*x^4) - (21*atanh((c^(1/4) 
*x)/(-a)^(1/4)))/(64*(-a)^(1/4)*c^(11/4))
 

Reduce [B] (verification not implemented)

Time = 0.21 (sec) , antiderivative size = 476, normalized size of antiderivative = 2.77 \[ \int \frac {x^{10}}{\left (a+c x^4\right )^3} \, dx =\text {Too large to display} \] Input:

int(x^10/(c*x^4+a)^3,x)
 

Output:

( - 42*c**(1/4)*a**(3/4)*sqrt(2)*atan((c**(1/4)*a**(1/4)*sqrt(2) - 2*sqrt( 
c)*x)/(c**(1/4)*a**(1/4)*sqrt(2)))*a**2 - 84*c**(1/4)*a**(3/4)*sqrt(2)*ata 
n((c**(1/4)*a**(1/4)*sqrt(2) - 2*sqrt(c)*x)/(c**(1/4)*a**(1/4)*sqrt(2)))*a 
*c*x**4 - 42*c**(1/4)*a**(3/4)*sqrt(2)*atan((c**(1/4)*a**(1/4)*sqrt(2) - 2 
*sqrt(c)*x)/(c**(1/4)*a**(1/4)*sqrt(2)))*c**2*x**8 + 42*c**(1/4)*a**(3/4)* 
sqrt(2)*atan((c**(1/4)*a**(1/4)*sqrt(2) + 2*sqrt(c)*x)/(c**(1/4)*a**(1/4)* 
sqrt(2)))*a**2 + 84*c**(1/4)*a**(3/4)*sqrt(2)*atan((c**(1/4)*a**(1/4)*sqrt 
(2) + 2*sqrt(c)*x)/(c**(1/4)*a**(1/4)*sqrt(2)))*a*c*x**4 + 42*c**(1/4)*a** 
(3/4)*sqrt(2)*atan((c**(1/4)*a**(1/4)*sqrt(2) + 2*sqrt(c)*x)/(c**(1/4)*a** 
(1/4)*sqrt(2)))*c**2*x**8 + 21*c**(1/4)*a**(3/4)*sqrt(2)*log( - c**(1/4)*a 
**(1/4)*sqrt(2)*x + sqrt(a) + sqrt(c)*x**2)*a**2 + 42*c**(1/4)*a**(3/4)*sq 
rt(2)*log( - c**(1/4)*a**(1/4)*sqrt(2)*x + sqrt(a) + sqrt(c)*x**2)*a*c*x** 
4 + 21*c**(1/4)*a**(3/4)*sqrt(2)*log( - c**(1/4)*a**(1/4)*sqrt(2)*x + sqrt 
(a) + sqrt(c)*x**2)*c**2*x**8 - 21*c**(1/4)*a**(3/4)*sqrt(2)*log(c**(1/4)* 
a**(1/4)*sqrt(2)*x + sqrt(a) + sqrt(c)*x**2)*a**2 - 42*c**(1/4)*a**(3/4)*s 
qrt(2)*log(c**(1/4)*a**(1/4)*sqrt(2)*x + sqrt(a) + sqrt(c)*x**2)*a*c*x**4 
- 21*c**(1/4)*a**(3/4)*sqrt(2)*log(c**(1/4)*a**(1/4)*sqrt(2)*x + sqrt(a) + 
 sqrt(c)*x**2)*c**2*x**8 - 56*a**2*c*x**3 - 88*a*c**2*x**7)/(256*a*c**3*(a 
**2 + 2*a*c*x**4 + c**2*x**8))