\(\int \frac {x^2}{(a+c x^4)^3} \, dx\) [100]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [C] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 13, antiderivative size = 172 \[ \int \frac {x^2}{\left (a+c x^4\right )^3} \, dx=\frac {x^3}{8 a \left (a+c x^4\right )^2}+\frac {5 x^3}{32 a^2 \left (a+c x^4\right )}-\frac {5 \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{64 \sqrt {2} a^{9/4} c^{3/4}}+\frac {5 \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{64 \sqrt {2} a^{9/4} c^{3/4}}-\frac {5 \text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x}{\sqrt {a}+\sqrt {c} x^2}\right )}{64 \sqrt {2} a^{9/4} c^{3/4}} \] Output:

1/8*x^3/a/(c*x^4+a)^2+5/32*x^3/a^2/(c*x^4+a)+5/128*arctan(-1+2^(1/2)*c^(1/ 
4)*x/a^(1/4))*2^(1/2)/a^(9/4)/c^(3/4)+5/128*arctan(1+2^(1/2)*c^(1/4)*x/a^( 
1/4))*2^(1/2)/a^(9/4)/c^(3/4)-5/128*arctanh(2^(1/2)*a^(1/4)*c^(1/4)*x/(a^( 
1/2)+c^(1/2)*x^2))*2^(1/2)/a^(9/4)/c^(3/4)
 

Mathematica [A] (verified)

Time = 0.07 (sec) , antiderivative size = 204, normalized size of antiderivative = 1.19 \[ \int \frac {x^2}{\left (a+c x^4\right )^3} \, dx=\frac {\frac {32 a^{5/4} x^3}{\left (a+c x^4\right )^2}+\frac {40 \sqrt [4]{a} x^3}{a+c x^4}-\frac {10 \sqrt {2} \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{c^{3/4}}+\frac {10 \sqrt {2} \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{c^{3/4}}+\frac {5 \sqrt {2} \log \left (\sqrt {a}-\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {c} x^2\right )}{c^{3/4}}-\frac {5 \sqrt {2} \log \left (\sqrt {a}+\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {c} x^2\right )}{c^{3/4}}}{256 a^{9/4}} \] Input:

Integrate[x^2/(a + c*x^4)^3,x]
 

Output:

((32*a^(5/4)*x^3)/(a + c*x^4)^2 + (40*a^(1/4)*x^3)/(a + c*x^4) - (10*Sqrt[ 
2]*ArcTan[1 - (Sqrt[2]*c^(1/4)*x)/a^(1/4)])/c^(3/4) + (10*Sqrt[2]*ArcTan[1 
 + (Sqrt[2]*c^(1/4)*x)/a^(1/4)])/c^(3/4) + (5*Sqrt[2]*Log[Sqrt[a] - Sqrt[2 
]*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^2])/c^(3/4) - (5*Sqrt[2]*Log[Sqrt[a] + Sqr 
t[2]*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^2])/c^(3/4))/(256*a^(9/4))
 

Rubi [A] (verified)

Time = 0.72 (sec) , antiderivative size = 254, normalized size of antiderivative = 1.48, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.769, Rules used = {819, 819, 826, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^2}{\left (a+c x^4\right )^3} \, dx\)

\(\Big \downarrow \) 819

\(\displaystyle \frac {5 \int \frac {x^2}{\left (c x^4+a\right )^2}dx}{8 a}+\frac {x^3}{8 a \left (a+c x^4\right )^2}\)

\(\Big \downarrow \) 819

\(\displaystyle \frac {5 \left (\frac {\int \frac {x^2}{c x^4+a}dx}{4 a}+\frac {x^3}{4 a \left (a+c x^4\right )}\right )}{8 a}+\frac {x^3}{8 a \left (a+c x^4\right )^2}\)

\(\Big \downarrow \) 826

\(\displaystyle \frac {5 \left (\frac {\frac {\int \frac {\sqrt {c} x^2+\sqrt {a}}{c x^4+a}dx}{2 \sqrt {c}}-\frac {\int \frac {\sqrt {a}-\sqrt {c} x^2}{c x^4+a}dx}{2 \sqrt {c}}}{4 a}+\frac {x^3}{4 a \left (a+c x^4\right )}\right )}{8 a}+\frac {x^3}{8 a \left (a+c x^4\right )^2}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {5 \left (\frac {\frac {\frac {\int \frac {1}{x^2-\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}+\frac {\sqrt {a}}{\sqrt {c}}}dx}{2 \sqrt {c}}+\frac {\int \frac {1}{x^2+\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}+\frac {\sqrt {a}}{\sqrt {c}}}dx}{2 \sqrt {c}}}{2 \sqrt {c}}-\frac {\int \frac {\sqrt {a}-\sqrt {c} x^2}{c x^4+a}dx}{2 \sqrt {c}}}{4 a}+\frac {x^3}{4 a \left (a+c x^4\right )}\right )}{8 a}+\frac {x^3}{8 a \left (a+c x^4\right )^2}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {5 \left (\frac {\frac {\frac {\int \frac {1}{-\left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )^2-1}d\left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}-\frac {\int \frac {1}{-\left (\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )^2-1}d\left (\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}}{2 \sqrt {c}}-\frac {\int \frac {\sqrt {a}-\sqrt {c} x^2}{c x^4+a}dx}{2 \sqrt {c}}}{4 a}+\frac {x^3}{4 a \left (a+c x^4\right )}\right )}{8 a}+\frac {x^3}{8 a \left (a+c x^4\right )^2}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {5 \left (\frac {\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}}{2 \sqrt {c}}-\frac {\int \frac {\sqrt {a}-\sqrt {c} x^2}{c x^4+a}dx}{2 \sqrt {c}}}{4 a}+\frac {x^3}{4 a \left (a+c x^4\right )}\right )}{8 a}+\frac {x^3}{8 a \left (a+c x^4\right )^2}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {5 \left (\frac {\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}}{2 \sqrt {c}}-\frac {-\frac {\int -\frac {\sqrt {2} \sqrt [4]{a}-2 \sqrt [4]{c} x}{\sqrt [4]{c} \left (x^2-\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}+\frac {\sqrt {a}}{\sqrt {c}}\right )}dx}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {2} \sqrt [4]{c} x+\sqrt [4]{a}\right )}{\sqrt [4]{c} \left (x^2+\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}+\frac {\sqrt {a}}{\sqrt {c}}\right )}dx}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}}{2 \sqrt {c}}}{4 a}+\frac {x^3}{4 a \left (a+c x^4\right )}\right )}{8 a}+\frac {x^3}{8 a \left (a+c x^4\right )^2}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {5 \left (\frac {\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}}{2 \sqrt {c}}-\frac {\frac {\int \frac {\sqrt {2} \sqrt [4]{a}-2 \sqrt [4]{c} x}{\sqrt [4]{c} \left (x^2-\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}+\frac {\sqrt {a}}{\sqrt {c}}\right )}dx}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {2} \sqrt [4]{c} x+\sqrt [4]{a}\right )}{\sqrt [4]{c} \left (x^2+\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}+\frac {\sqrt {a}}{\sqrt {c}}\right )}dx}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}}{2 \sqrt {c}}}{4 a}+\frac {x^3}{4 a \left (a+c x^4\right )}\right )}{8 a}+\frac {x^3}{8 a \left (a+c x^4\right )^2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {5 \left (\frac {\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}}{2 \sqrt {c}}-\frac {\frac {\int \frac {\sqrt {2} \sqrt [4]{a}-2 \sqrt [4]{c} x}{x^2-\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}+\frac {\sqrt {a}}{\sqrt {c}}}dx}{2 \sqrt {2} \sqrt [4]{a} \sqrt {c}}+\frac {\int \frac {\sqrt {2} \sqrt [4]{c} x+\sqrt [4]{a}}{x^2+\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}+\frac {\sqrt {a}}{\sqrt {c}}}dx}{2 \sqrt [4]{a} \sqrt {c}}}{2 \sqrt {c}}}{4 a}+\frac {x^3}{4 a \left (a+c x^4\right )}\right )}{8 a}+\frac {x^3}{8 a \left (a+c x^4\right )^2}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {5 \left (\frac {\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}}{2 \sqrt {c}}-\frac {\frac {\log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {a}+\sqrt {c} x^2\right )}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}-\frac {\log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {a}+\sqrt {c} x^2\right )}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}}{2 \sqrt {c}}}{4 a}+\frac {x^3}{4 a \left (a+c x^4\right )}\right )}{8 a}+\frac {x^3}{8 a \left (a+c x^4\right )^2}\)

Input:

Int[x^2/(a + c*x^4)^3,x]
 

Output:

x^3/(8*a*(a + c*x^4)^2) + (5*(x^3/(4*a*(a + c*x^4)) + ((-(ArcTan[1 - (Sqrt 
[2]*c^(1/4)*x)/a^(1/4)]/(Sqrt[2]*a^(1/4)*c^(1/4))) + ArcTan[1 + (Sqrt[2]*c 
^(1/4)*x)/a^(1/4)]/(Sqrt[2]*a^(1/4)*c^(1/4)))/(2*Sqrt[c]) - (-1/2*Log[Sqrt 
[a] - Sqrt[2]*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^2]/(Sqrt[2]*a^(1/4)*c^(1/4)) + 
 Log[Sqrt[a] + Sqrt[2]*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^2]/(2*Sqrt[2]*a^(1/4) 
*c^(1/4)))/(2*Sqrt[c]))/(4*a)))/(8*a)
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 819
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(-( 
c*x)^(m + 1))*((a + b*x^n)^(p + 1)/(a*c*n*(p + 1))), x] + Simp[(m + n*(p + 
1) + 1)/(a*n*(p + 1))   Int[(c*x)^m*(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a 
, b, c, m}, x] && IGtQ[n, 0] && LtQ[p, -1] && IntBinomialQ[a, b, c, n, m, p 
, x]
 

rule 826
Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 
2]], s = Denominator[Rt[a/b, 2]]}, Simp[1/(2*s)   Int[(r + s*x^2)/(a + b*x^ 
4), x], x] - Simp[1/(2*s)   Int[(r - s*x^2)/(a + b*x^4), x], x]] /; FreeQ[{ 
a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] 
 && AtomQ[SplitProduct[SumBaseQ, b]]))
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.51 (sec) , antiderivative size = 59, normalized size of antiderivative = 0.34

method result size
risch \(\frac {\frac {5 c \,x^{7}}{32 a^{2}}+\frac {9 x^{3}}{32 a}}{\left (c \,x^{4}+a \right )^{2}}+\frac {5 \left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{4} c +a \right )}{\sum }\frac {\ln \left (x -\textit {\_R} \right )}{\textit {\_R}}\right )}{128 a^{2} c}\) \(59\)
default \(\frac {x^{3}}{8 a \left (c \,x^{4}+a \right )^{2}}+\frac {\frac {5 x^{3}}{32 a \left (c \,x^{4}+a \right )}+\frac {5 \sqrt {2}\, \left (\ln \left (\frac {x^{2}-\left (\frac {a}{c}\right )^{\frac {1}{4}} x \sqrt {2}+\sqrt {\frac {a}{c}}}{x^{2}+\left (\frac {a}{c}\right )^{\frac {1}{4}} x \sqrt {2}+\sqrt {\frac {a}{c}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{c}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{c}\right )^{\frac {1}{4}}}-1\right )\right )}{256 a c \left (\frac {a}{c}\right )^{\frac {1}{4}}}}{a}\) \(146\)

Input:

int(x^2/(c*x^4+a)^3,x,method=_RETURNVERBOSE)
 

Output:

(5/32/a^2*c*x^7+9/32/a*x^3)/(c*x^4+a)^2+5/128/a^2/c*sum(1/_R*ln(x-_R),_R=R 
ootOf(_Z^4*c+a))
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.09 (sec) , antiderivative size = 269, normalized size of antiderivative = 1.56 \[ \int \frac {x^2}{\left (a+c x^4\right )^3} \, dx=\frac {20 \, c x^{7} + 36 \, a x^{3} + 5 \, {\left (a^{2} c^{2} x^{8} + 2 \, a^{3} c x^{4} + a^{4}\right )} \left (-\frac {1}{a^{9} c^{3}}\right )^{\frac {1}{4}} \log \left (a^{7} c^{2} \left (-\frac {1}{a^{9} c^{3}}\right )^{\frac {3}{4}} + x\right ) - 5 \, {\left (i \, a^{2} c^{2} x^{8} + 2 i \, a^{3} c x^{4} + i \, a^{4}\right )} \left (-\frac {1}{a^{9} c^{3}}\right )^{\frac {1}{4}} \log \left (i \, a^{7} c^{2} \left (-\frac {1}{a^{9} c^{3}}\right )^{\frac {3}{4}} + x\right ) - 5 \, {\left (-i \, a^{2} c^{2} x^{8} - 2 i \, a^{3} c x^{4} - i \, a^{4}\right )} \left (-\frac {1}{a^{9} c^{3}}\right )^{\frac {1}{4}} \log \left (-i \, a^{7} c^{2} \left (-\frac {1}{a^{9} c^{3}}\right )^{\frac {3}{4}} + x\right ) - 5 \, {\left (a^{2} c^{2} x^{8} + 2 \, a^{3} c x^{4} + a^{4}\right )} \left (-\frac {1}{a^{9} c^{3}}\right )^{\frac {1}{4}} \log \left (-a^{7} c^{2} \left (-\frac {1}{a^{9} c^{3}}\right )^{\frac {3}{4}} + x\right )}{128 \, {\left (a^{2} c^{2} x^{8} + 2 \, a^{3} c x^{4} + a^{4}\right )}} \] Input:

integrate(x^2/(c*x^4+a)^3,x, algorithm="fricas")
 

Output:

1/128*(20*c*x^7 + 36*a*x^3 + 5*(a^2*c^2*x^8 + 2*a^3*c*x^4 + a^4)*(-1/(a^9* 
c^3))^(1/4)*log(a^7*c^2*(-1/(a^9*c^3))^(3/4) + x) - 5*(I*a^2*c^2*x^8 + 2*I 
*a^3*c*x^4 + I*a^4)*(-1/(a^9*c^3))^(1/4)*log(I*a^7*c^2*(-1/(a^9*c^3))^(3/4 
) + x) - 5*(-I*a^2*c^2*x^8 - 2*I*a^3*c*x^4 - I*a^4)*(-1/(a^9*c^3))^(1/4)*l 
og(-I*a^7*c^2*(-1/(a^9*c^3))^(3/4) + x) - 5*(a^2*c^2*x^8 + 2*a^3*c*x^4 + a 
^4)*(-1/(a^9*c^3))^(1/4)*log(-a^7*c^2*(-1/(a^9*c^3))^(3/4) + x))/(a^2*c^2* 
x^8 + 2*a^3*c*x^4 + a^4)
 

Sympy [A] (verification not implemented)

Time = 0.22 (sec) , antiderivative size = 71, normalized size of antiderivative = 0.41 \[ \int \frac {x^2}{\left (a+c x^4\right )^3} \, dx=\frac {9 a x^{3} + 5 c x^{7}}{32 a^{4} + 64 a^{3} c x^{4} + 32 a^{2} c^{2} x^{8}} + \operatorname {RootSum} {\left (268435456 t^{4} a^{9} c^{3} + 625, \left ( t \mapsto t \log {\left (\frac {2097152 t^{3} a^{7} c^{2}}{125} + x \right )} \right )\right )} \] Input:

integrate(x**2/(c*x**4+a)**3,x)
 

Output:

(9*a*x**3 + 5*c*x**7)/(32*a**4 + 64*a**3*c*x**4 + 32*a**2*c**2*x**8) + Roo 
tSum(268435456*_t**4*a**9*c**3 + 625, Lambda(_t, _t*log(2097152*_t**3*a**7 
*c**2/125 + x)))
 

Maxima [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 214, normalized size of antiderivative = 1.24 \[ \int \frac {x^2}{\left (a+c x^4\right )^3} \, dx=\frac {5 \, c x^{7} + 9 \, a x^{3}}{32 \, {\left (a^{2} c^{2} x^{8} + 2 \, a^{3} c x^{4} + a^{4}\right )}} + \frac {5 \, {\left (\frac {2 \, \sqrt {2} \arctan \left (\frac {\sqrt {2} {\left (2 \, \sqrt {c} x + \sqrt {2} a^{\frac {1}{4}} c^{\frac {1}{4}}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {c}}}\right )}{\sqrt {\sqrt {a} \sqrt {c}} \sqrt {c}} + \frac {2 \, \sqrt {2} \arctan \left (\frac {\sqrt {2} {\left (2 \, \sqrt {c} x - \sqrt {2} a^{\frac {1}{4}} c^{\frac {1}{4}}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {c}}}\right )}{\sqrt {\sqrt {a} \sqrt {c}} \sqrt {c}} - \frac {\sqrt {2} \log \left (\sqrt {c} x^{2} + \sqrt {2} a^{\frac {1}{4}} c^{\frac {1}{4}} x + \sqrt {a}\right )}{a^{\frac {1}{4}} c^{\frac {3}{4}}} + \frac {\sqrt {2} \log \left (\sqrt {c} x^{2} - \sqrt {2} a^{\frac {1}{4}} c^{\frac {1}{4}} x + \sqrt {a}\right )}{a^{\frac {1}{4}} c^{\frac {3}{4}}}\right )}}{256 \, a^{2}} \] Input:

integrate(x^2/(c*x^4+a)^3,x, algorithm="maxima")
 

Output:

1/32*(5*c*x^7 + 9*a*x^3)/(a^2*c^2*x^8 + 2*a^3*c*x^4 + a^4) + 5/256*(2*sqrt 
(2)*arctan(1/2*sqrt(2)*(2*sqrt(c)*x + sqrt(2)*a^(1/4)*c^(1/4))/sqrt(sqrt(a 
)*sqrt(c)))/(sqrt(sqrt(a)*sqrt(c))*sqrt(c)) + 2*sqrt(2)*arctan(1/2*sqrt(2) 
*(2*sqrt(c)*x - sqrt(2)*a^(1/4)*c^(1/4))/sqrt(sqrt(a)*sqrt(c)))/(sqrt(sqrt 
(a)*sqrt(c))*sqrt(c)) - sqrt(2)*log(sqrt(c)*x^2 + sqrt(2)*a^(1/4)*c^(1/4)* 
x + sqrt(a))/(a^(1/4)*c^(3/4)) + sqrt(2)*log(sqrt(c)*x^2 - sqrt(2)*a^(1/4) 
*c^(1/4)*x + sqrt(a))/(a^(1/4)*c^(3/4)))/a^2
 

Giac [A] (verification not implemented)

Time = 0.13 (sec) , antiderivative size = 206, normalized size of antiderivative = 1.20 \[ \int \frac {x^2}{\left (a+c x^4\right )^3} \, dx=\frac {5 \, c x^{7} + 9 \, a x^{3}}{32 \, {\left (c x^{4} + a\right )}^{2} a^{2}} + \frac {5 \, \sqrt {2} \left (a c^{3}\right )^{\frac {3}{4}} \arctan \left (\frac {\sqrt {2} {\left (2 \, x + \sqrt {2} \left (\frac {a}{c}\right )^{\frac {1}{4}}\right )}}{2 \, \left (\frac {a}{c}\right )^{\frac {1}{4}}}\right )}{128 \, a^{3} c^{3}} + \frac {5 \, \sqrt {2} \left (a c^{3}\right )^{\frac {3}{4}} \arctan \left (\frac {\sqrt {2} {\left (2 \, x - \sqrt {2} \left (\frac {a}{c}\right )^{\frac {1}{4}}\right )}}{2 \, \left (\frac {a}{c}\right )^{\frac {1}{4}}}\right )}{128 \, a^{3} c^{3}} - \frac {5 \, \sqrt {2} \left (a c^{3}\right )^{\frac {3}{4}} \log \left (x^{2} + \sqrt {2} x \left (\frac {a}{c}\right )^{\frac {1}{4}} + \sqrt {\frac {a}{c}}\right )}{256 \, a^{3} c^{3}} + \frac {5 \, \sqrt {2} \left (a c^{3}\right )^{\frac {3}{4}} \log \left (x^{2} - \sqrt {2} x \left (\frac {a}{c}\right )^{\frac {1}{4}} + \sqrt {\frac {a}{c}}\right )}{256 \, a^{3} c^{3}} \] Input:

integrate(x^2/(c*x^4+a)^3,x, algorithm="giac")
 

Output:

1/32*(5*c*x^7 + 9*a*x^3)/((c*x^4 + a)^2*a^2) + 5/128*sqrt(2)*(a*c^3)^(3/4) 
*arctan(1/2*sqrt(2)*(2*x + sqrt(2)*(a/c)^(1/4))/(a/c)^(1/4))/(a^3*c^3) + 5 
/128*sqrt(2)*(a*c^3)^(3/4)*arctan(1/2*sqrt(2)*(2*x - sqrt(2)*(a/c)^(1/4))/ 
(a/c)^(1/4))/(a^3*c^3) - 5/256*sqrt(2)*(a*c^3)^(3/4)*log(x^2 + sqrt(2)*x*( 
a/c)^(1/4) + sqrt(a/c))/(a^3*c^3) + 5/256*sqrt(2)*(a*c^3)^(3/4)*log(x^2 - 
sqrt(2)*x*(a/c)^(1/4) + sqrt(a/c))/(a^3*c^3)
 

Mupad [B] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 82, normalized size of antiderivative = 0.48 \[ \int \frac {x^2}{\left (a+c x^4\right )^3} \, dx=\frac {\frac {9\,x^3}{32\,a}+\frac {5\,c\,x^7}{32\,a^2}}{a^2+2\,a\,c\,x^4+c^2\,x^8}+\frac {5\,\mathrm {atan}\left (\frac {c^{1/4}\,x}{{\left (-a\right )}^{1/4}}\right )}{64\,{\left (-a\right )}^{9/4}\,c^{3/4}}-\frac {5\,\mathrm {atanh}\left (\frac {c^{1/4}\,x}{{\left (-a\right )}^{1/4}}\right )}{64\,{\left (-a\right )}^{9/4}\,c^{3/4}} \] Input:

int(x^2/(a + c*x^4)^3,x)
 

Output:

((9*x^3)/(32*a) + (5*c*x^7)/(32*a^2))/(a^2 + c^2*x^8 + 2*a*c*x^4) + (5*ata 
n((c^(1/4)*x)/(-a)^(1/4)))/(64*(-a)^(9/4)*c^(3/4)) - (5*atanh((c^(1/4)*x)/ 
(-a)^(1/4)))/(64*(-a)^(9/4)*c^(3/4))
 

Reduce [B] (verification not implemented)

Time = 0.21 (sec) , antiderivative size = 476, normalized size of antiderivative = 2.77 \[ \int \frac {x^2}{\left (a+c x^4\right )^3} \, dx =\text {Too large to display} \] Input:

int(x^2/(c*x^4+a)^3,x)
 

Output:

( - 10*c**(1/4)*a**(3/4)*sqrt(2)*atan((c**(1/4)*a**(1/4)*sqrt(2) - 2*sqrt( 
c)*x)/(c**(1/4)*a**(1/4)*sqrt(2)))*a**2 - 20*c**(1/4)*a**(3/4)*sqrt(2)*ata 
n((c**(1/4)*a**(1/4)*sqrt(2) - 2*sqrt(c)*x)/(c**(1/4)*a**(1/4)*sqrt(2)))*a 
*c*x**4 - 10*c**(1/4)*a**(3/4)*sqrt(2)*atan((c**(1/4)*a**(1/4)*sqrt(2) - 2 
*sqrt(c)*x)/(c**(1/4)*a**(1/4)*sqrt(2)))*c**2*x**8 + 10*c**(1/4)*a**(3/4)* 
sqrt(2)*atan((c**(1/4)*a**(1/4)*sqrt(2) + 2*sqrt(c)*x)/(c**(1/4)*a**(1/4)* 
sqrt(2)))*a**2 + 20*c**(1/4)*a**(3/4)*sqrt(2)*atan((c**(1/4)*a**(1/4)*sqrt 
(2) + 2*sqrt(c)*x)/(c**(1/4)*a**(1/4)*sqrt(2)))*a*c*x**4 + 10*c**(1/4)*a** 
(3/4)*sqrt(2)*atan((c**(1/4)*a**(1/4)*sqrt(2) + 2*sqrt(c)*x)/(c**(1/4)*a** 
(1/4)*sqrt(2)))*c**2*x**8 + 5*c**(1/4)*a**(3/4)*sqrt(2)*log( - c**(1/4)*a* 
*(1/4)*sqrt(2)*x + sqrt(a) + sqrt(c)*x**2)*a**2 + 10*c**(1/4)*a**(3/4)*sqr 
t(2)*log( - c**(1/4)*a**(1/4)*sqrt(2)*x + sqrt(a) + sqrt(c)*x**2)*a*c*x**4 
 + 5*c**(1/4)*a**(3/4)*sqrt(2)*log( - c**(1/4)*a**(1/4)*sqrt(2)*x + sqrt(a 
) + sqrt(c)*x**2)*c**2*x**8 - 5*c**(1/4)*a**(3/4)*sqrt(2)*log(c**(1/4)*a** 
(1/4)*sqrt(2)*x + sqrt(a) + sqrt(c)*x**2)*a**2 - 10*c**(1/4)*a**(3/4)*sqrt 
(2)*log(c**(1/4)*a**(1/4)*sqrt(2)*x + sqrt(a) + sqrt(c)*x**2)*a*c*x**4 - 5 
*c**(1/4)*a**(3/4)*sqrt(2)*log(c**(1/4)*a**(1/4)*sqrt(2)*x + sqrt(a) + sqr 
t(c)*x**2)*c**2*x**8 + 72*a**2*c*x**3 + 40*a*c**2*x**7)/(256*a**3*c*(a**2 
+ 2*a*c*x**4 + c**2*x**8))