\(\int \frac {x^{10}}{\sqrt {a-b x^4}} \, dx\) [219]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 16, antiderivative size = 158 \[ \int \frac {x^{10}}{\sqrt {a-b x^4}} \, dx=-\frac {7 a x^3 \sqrt {a-b x^4}}{45 b^2}-\frac {x^7 \sqrt {a-b x^4}}{9 b}+\frac {7 a^{11/4} \sqrt {1-\frac {b x^4}{a}} E\left (\left .\arcsin \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )\right |-1\right )}{15 b^{11/4} \sqrt {a-b x^4}}-\frac {7 a^{11/4} \sqrt {1-\frac {b x^4}{a}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),-1\right )}{15 b^{11/4} \sqrt {a-b x^4}} \] Output:

-7/45*a*x^3*(-b*x^4+a)^(1/2)/b^2-1/9*x^7*(-b*x^4+a)^(1/2)/b+7/15*a^(11/4)* 
(1-b*x^4/a)^(1/2)*EllipticE(b^(1/4)*x/a^(1/4),I)/b^(11/4)/(-b*x^4+a)^(1/2) 
-7/15*a^(11/4)*(1-b*x^4/a)^(1/2)*EllipticF(b^(1/4)*x/a^(1/4),I)/b^(11/4)/( 
-b*x^4+a)^(1/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.04 (sec) , antiderivative size = 81, normalized size of antiderivative = 0.51 \[ \int \frac {x^{10}}{\sqrt {a-b x^4}} \, dx=\frac {x^3 \left (-7 a^2+2 a b x^4+5 b^2 x^8+7 a^2 \sqrt {1-\frac {b x^4}{a}} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},\frac {b x^4}{a}\right )\right )}{45 b^2 \sqrt {a-b x^4}} \] Input:

Integrate[x^10/Sqrt[a - b*x^4],x]
 

Output:

(x^3*(-7*a^2 + 2*a*b*x^4 + 5*b^2*x^8 + 7*a^2*Sqrt[1 - (b*x^4)/a]*Hypergeom 
etric2F1[1/2, 3/4, 7/4, (b*x^4)/a]))/(45*b^2*Sqrt[a - b*x^4])
 

Rubi [A] (verified)

Time = 0.59 (sec) , antiderivative size = 170, normalized size of antiderivative = 1.08, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.562, Rules used = {843, 843, 836, 27, 765, 762, 1390, 1389, 327}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^{10}}{\sqrt {a-b x^4}} \, dx\)

\(\Big \downarrow \) 843

\(\displaystyle \frac {7 a \int \frac {x^6}{\sqrt {a-b x^4}}dx}{9 b}-\frac {x^7 \sqrt {a-b x^4}}{9 b}\)

\(\Big \downarrow \) 843

\(\displaystyle \frac {7 a \left (\frac {3 a \int \frac {x^2}{\sqrt {a-b x^4}}dx}{5 b}-\frac {x^3 \sqrt {a-b x^4}}{5 b}\right )}{9 b}-\frac {x^7 \sqrt {a-b x^4}}{9 b}\)

\(\Big \downarrow \) 836

\(\displaystyle \frac {7 a \left (\frac {3 a \left (\frac {\sqrt {a} \int \frac {\sqrt {b} x^2+\sqrt {a}}{\sqrt {a} \sqrt {a-b x^4}}dx}{\sqrt {b}}-\frac {\sqrt {a} \int \frac {1}{\sqrt {a-b x^4}}dx}{\sqrt {b}}\right )}{5 b}-\frac {x^3 \sqrt {a-b x^4}}{5 b}\right )}{9 b}-\frac {x^7 \sqrt {a-b x^4}}{9 b}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {7 a \left (\frac {3 a \left (\frac {\int \frac {\sqrt {b} x^2+\sqrt {a}}{\sqrt {a-b x^4}}dx}{\sqrt {b}}-\frac {\sqrt {a} \int \frac {1}{\sqrt {a-b x^4}}dx}{\sqrt {b}}\right )}{5 b}-\frac {x^3 \sqrt {a-b x^4}}{5 b}\right )}{9 b}-\frac {x^7 \sqrt {a-b x^4}}{9 b}\)

\(\Big \downarrow \) 765

\(\displaystyle \frac {7 a \left (\frac {3 a \left (\frac {\int \frac {\sqrt {b} x^2+\sqrt {a}}{\sqrt {a-b x^4}}dx}{\sqrt {b}}-\frac {\sqrt {a} \sqrt {1-\frac {b x^4}{a}} \int \frac {1}{\sqrt {1-\frac {b x^4}{a}}}dx}{\sqrt {b} \sqrt {a-b x^4}}\right )}{5 b}-\frac {x^3 \sqrt {a-b x^4}}{5 b}\right )}{9 b}-\frac {x^7 \sqrt {a-b x^4}}{9 b}\)

\(\Big \downarrow \) 762

\(\displaystyle \frac {7 a \left (\frac {3 a \left (\frac {\int \frac {\sqrt {b} x^2+\sqrt {a}}{\sqrt {a-b x^4}}dx}{\sqrt {b}}-\frac {a^{3/4} \sqrt {1-\frac {b x^4}{a}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),-1\right )}{b^{3/4} \sqrt {a-b x^4}}\right )}{5 b}-\frac {x^3 \sqrt {a-b x^4}}{5 b}\right )}{9 b}-\frac {x^7 \sqrt {a-b x^4}}{9 b}\)

\(\Big \downarrow \) 1390

\(\displaystyle \frac {7 a \left (\frac {3 a \left (\frac {\sqrt {1-\frac {b x^4}{a}} \int \frac {\sqrt {b} x^2+\sqrt {a}}{\sqrt {1-\frac {b x^4}{a}}}dx}{\sqrt {b} \sqrt {a-b x^4}}-\frac {a^{3/4} \sqrt {1-\frac {b x^4}{a}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),-1\right )}{b^{3/4} \sqrt {a-b x^4}}\right )}{5 b}-\frac {x^3 \sqrt {a-b x^4}}{5 b}\right )}{9 b}-\frac {x^7 \sqrt {a-b x^4}}{9 b}\)

\(\Big \downarrow \) 1389

\(\displaystyle \frac {7 a \left (\frac {3 a \left (\frac {\sqrt {a} \sqrt {1-\frac {b x^4}{a}} \int \frac {\sqrt {\frac {\sqrt {b} x^2}{\sqrt {a}}+1}}{\sqrt {1-\frac {\sqrt {b} x^2}{\sqrt {a}}}}dx}{\sqrt {b} \sqrt {a-b x^4}}-\frac {a^{3/4} \sqrt {1-\frac {b x^4}{a}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),-1\right )}{b^{3/4} \sqrt {a-b x^4}}\right )}{5 b}-\frac {x^3 \sqrt {a-b x^4}}{5 b}\right )}{9 b}-\frac {x^7 \sqrt {a-b x^4}}{9 b}\)

\(\Big \downarrow \) 327

\(\displaystyle \frac {7 a \left (\frac {3 a \left (\frac {a^{3/4} \sqrt {1-\frac {b x^4}{a}} E\left (\left .\arcsin \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )\right |-1\right )}{b^{3/4} \sqrt {a-b x^4}}-\frac {a^{3/4} \sqrt {1-\frac {b x^4}{a}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),-1\right )}{b^{3/4} \sqrt {a-b x^4}}\right )}{5 b}-\frac {x^3 \sqrt {a-b x^4}}{5 b}\right )}{9 b}-\frac {x^7 \sqrt {a-b x^4}}{9 b}\)

Input:

Int[x^10/Sqrt[a - b*x^4],x]
 

Output:

-1/9*(x^7*Sqrt[a - b*x^4])/b + (7*a*(-1/5*(x^3*Sqrt[a - b*x^4])/b + (3*a*( 
(a^(3/4)*Sqrt[1 - (b*x^4)/a]*EllipticE[ArcSin[(b^(1/4)*x)/a^(1/4)], -1])/( 
b^(3/4)*Sqrt[a - b*x^4]) - (a^(3/4)*Sqrt[1 - (b*x^4)/a]*EllipticF[ArcSin[( 
b^(1/4)*x)/a^(1/4)], -1])/(b^(3/4)*Sqrt[a - b*x^4])))/(5*b)))/(9*b)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 327
Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[ 
(Sqrt[a]/(Sqrt[c]*Rt[-d/c, 2]))*EllipticE[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d) 
)], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 0]
 

rule 762
Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Simp[(1/(Sqrt[a]*Rt[-b/a, 4]) 
)*EllipticF[ArcSin[Rt[-b/a, 4]*x], -1], x] /; FreeQ[{a, b}, x] && NegQ[b/a] 
 && GtQ[a, 0]
 

rule 765
Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Simp[Sqrt[1 + b*(x^4/a)]/Sqrt 
[a + b*x^4]   Int[1/Sqrt[1 + b*(x^4/a)], x], x] /; FreeQ[{a, b}, x] && NegQ 
[b/a] &&  !GtQ[a, 0]
 

rule 836
Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[-b/a, 2]}, 
Simp[-q^(-1)   Int[1/Sqrt[a + b*x^4], x], x] + Simp[1/q   Int[(1 + q*x^2)/S 
qrt[a + b*x^4], x], x]] /; FreeQ[{a, b}, x] && NegQ[b/a]
 

rule 843
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(n 
 - 1)*(c*x)^(m - n + 1)*((a + b*x^n)^(p + 1)/(b*(m + n*p + 1))), x] - Simp[ 
a*c^n*((m - n + 1)/(b*(m + n*p + 1)))   Int[(c*x)^(m - n)*(a + b*x^n)^p, x] 
, x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n* 
p + 1, 0] && IntBinomialQ[a, b, c, n, m, p, x]
 

rule 1389
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> Simp[d/Sq 
rt[a]   Int[Sqrt[1 + e*(x^2/d)]/Sqrt[1 - e*(x^2/d)], x], x] /; FreeQ[{a, c, 
 d, e}, x] && EqQ[c*d^2 + a*e^2, 0] && NegQ[c/a] && GtQ[a, 0]
 

rule 1390
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> Simp[Sqrt 
[1 + c*(x^4/a)]/Sqrt[a + c*x^4]   Int[(d + e*x^2)/Sqrt[1 + c*(x^4/a)], x], 
x] /; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 + a*e^2, 0] && NegQ[c/a] &&  !GtQ 
[a, 0] &&  !(LtQ[a, 0] && GtQ[c, 0])
 
Maple [A] (verified)

Time = 1.08 (sec) , antiderivative size = 117, normalized size of antiderivative = 0.74

method result size
risch \(-\frac {x^{3} \left (5 b \,x^{4}+7 a \right ) \sqrt {-b \,x^{4}+a}}{45 b^{2}}-\frac {7 a^{\frac {5}{2}} \sqrt {1-\frac {\sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {\sqrt {b}\, x^{2}}{\sqrt {a}}}\, \left (\operatorname {EllipticF}\left (x \sqrt {\frac {\sqrt {b}}{\sqrt {a}}}, i\right )-\operatorname {EllipticE}\left (x \sqrt {\frac {\sqrt {b}}{\sqrt {a}}}, i\right )\right )}{15 b^{\frac {5}{2}} \sqrt {\frac {\sqrt {b}}{\sqrt {a}}}\, \sqrt {-b \,x^{4}+a}}\) \(117\)
default \(-\frac {x^{7} \sqrt {-b \,x^{4}+a}}{9 b}-\frac {7 a \,x^{3} \sqrt {-b \,x^{4}+a}}{45 b^{2}}-\frac {7 a^{\frac {5}{2}} \sqrt {1-\frac {\sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {\sqrt {b}\, x^{2}}{\sqrt {a}}}\, \left (\operatorname {EllipticF}\left (x \sqrt {\frac {\sqrt {b}}{\sqrt {a}}}, i\right )-\operatorname {EllipticE}\left (x \sqrt {\frac {\sqrt {b}}{\sqrt {a}}}, i\right )\right )}{15 b^{\frac {5}{2}} \sqrt {\frac {\sqrt {b}}{\sqrt {a}}}\, \sqrt {-b \,x^{4}+a}}\) \(126\)
elliptic \(-\frac {x^{7} \sqrt {-b \,x^{4}+a}}{9 b}-\frac {7 a \,x^{3} \sqrt {-b \,x^{4}+a}}{45 b^{2}}-\frac {7 a^{\frac {5}{2}} \sqrt {1-\frac {\sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {\sqrt {b}\, x^{2}}{\sqrt {a}}}\, \left (\operatorname {EllipticF}\left (x \sqrt {\frac {\sqrt {b}}{\sqrt {a}}}, i\right )-\operatorname {EllipticE}\left (x \sqrt {\frac {\sqrt {b}}{\sqrt {a}}}, i\right )\right )}{15 b^{\frac {5}{2}} \sqrt {\frac {\sqrt {b}}{\sqrt {a}}}\, \sqrt {-b \,x^{4}+a}}\) \(126\)

Input:

int(x^10/(-b*x^4+a)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

-1/45*x^3*(5*b*x^4+7*a)*(-b*x^4+a)^(1/2)/b^2-7/15*a^(5/2)/b^(5/2)/(1/a^(1/ 
2)*b^(1/2))^(1/2)*(1-b^(1/2)*x^2/a^(1/2))^(1/2)*(1+b^(1/2)*x^2/a^(1/2))^(1 
/2)/(-b*x^4+a)^(1/2)*(EllipticF(x*(1/a^(1/2)*b^(1/2))^(1/2),I)-EllipticE(x 
*(1/a^(1/2)*b^(1/2))^(1/2),I))
 

Fricas [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 105, normalized size of antiderivative = 0.66 \[ \int \frac {x^{10}}{\sqrt {a-b x^4}} \, dx=-\frac {21 \, a^{2} \sqrt {-b} x \left (\frac {a}{b}\right )^{\frac {3}{4}} E(\arcsin \left (\frac {\left (\frac {a}{b}\right )^{\frac {1}{4}}}{x}\right )\,|\,-1) - 21 \, a^{2} \sqrt {-b} x \left (\frac {a}{b}\right )^{\frac {3}{4}} F(\arcsin \left (\frac {\left (\frac {a}{b}\right )^{\frac {1}{4}}}{x}\right )\,|\,-1) + {\left (5 \, b^{2} x^{8} + 7 \, a b x^{4} + 21 \, a^{2}\right )} \sqrt {-b x^{4} + a}}{45 \, b^{3} x} \] Input:

integrate(x^10/(-b*x^4+a)^(1/2),x, algorithm="fricas")
 

Output:

-1/45*(21*a^2*sqrt(-b)*x*(a/b)^(3/4)*elliptic_e(arcsin((a/b)^(1/4)/x), -1) 
 - 21*a^2*sqrt(-b)*x*(a/b)^(3/4)*elliptic_f(arcsin((a/b)^(1/4)/x), -1) + ( 
5*b^2*x^8 + 7*a*b*x^4 + 21*a^2)*sqrt(-b*x^4 + a))/(b^3*x)
 

Sympy [A] (verification not implemented)

Time = 0.80 (sec) , antiderivative size = 39, normalized size of antiderivative = 0.25 \[ \int \frac {x^{10}}{\sqrt {a-b x^4}} \, dx=\frac {x^{11} \Gamma \left (\frac {11}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, \frac {11}{4} \\ \frac {15}{4} \end {matrix}\middle | {\frac {b x^{4} e^{2 i \pi }}{a}} \right )}}{4 \sqrt {a} \Gamma \left (\frac {15}{4}\right )} \] Input:

integrate(x**10/(-b*x**4+a)**(1/2),x)
 

Output:

x**11*gamma(11/4)*hyper((1/2, 11/4), (15/4,), b*x**4*exp_polar(2*I*pi)/a)/ 
(4*sqrt(a)*gamma(15/4))
 

Maxima [F]

\[ \int \frac {x^{10}}{\sqrt {a-b x^4}} \, dx=\int { \frac {x^{10}}{\sqrt {-b x^{4} + a}} \,d x } \] Input:

integrate(x^10/(-b*x^4+a)^(1/2),x, algorithm="maxima")
 

Output:

integrate(x^10/sqrt(-b*x^4 + a), x)
 

Giac [F]

\[ \int \frac {x^{10}}{\sqrt {a-b x^4}} \, dx=\int { \frac {x^{10}}{\sqrt {-b x^{4} + a}} \,d x } \] Input:

integrate(x^10/(-b*x^4+a)^(1/2),x, algorithm="giac")
 

Output:

integrate(x^10/sqrt(-b*x^4 + a), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {x^{10}}{\sqrt {a-b x^4}} \, dx=\int \frac {x^{10}}{\sqrt {a-b\,x^4}} \,d x \] Input:

int(x^10/(a - b*x^4)^(1/2),x)
 

Output:

int(x^10/(a - b*x^4)^(1/2), x)
 

Reduce [F]

\[ \int \frac {x^{10}}{\sqrt {a-b x^4}} \, dx=\frac {-7 \sqrt {-b \,x^{4}+a}\, a \,x^{3}-5 \sqrt {-b \,x^{4}+a}\, b \,x^{7}+21 \left (\int \frac {\sqrt {-b \,x^{4}+a}\, x^{2}}{-b \,x^{4}+a}d x \right ) a^{2}}{45 b^{2}} \] Input:

int(x^10/(-b*x^4+a)^(1/2),x)
 

Output:

( - 7*sqrt(a - b*x**4)*a*x**3 - 5*sqrt(a - b*x**4)*b*x**7 + 21*int((sqrt(a 
 - b*x**4)*x**2)/(a - b*x**4),x)*a**2)/(45*b**2)