\(\int \frac {1}{x^4 (a+c x^4)} \, dx\) [66]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [C] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 13, antiderivative size = 144 \[ \int \frac {1}{x^4 \left (a+c x^4\right )} \, dx=-\frac {1}{3 a x^3}+\frac {c^{3/4} \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{2 \sqrt {2} a^{7/4}}-\frac {c^{3/4} \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{2 \sqrt {2} a^{7/4}}-\frac {c^{3/4} \text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x}{\sqrt {a}+\sqrt {c} x^2}\right )}{2 \sqrt {2} a^{7/4}} \] Output:

-1/3/a/x^3-1/4*c^(3/4)*arctan(-1+2^(1/2)*c^(1/4)*x/a^(1/4))*2^(1/2)/a^(7/4 
)-1/4*c^(3/4)*arctan(1+2^(1/2)*c^(1/4)*x/a^(1/4))*2^(1/2)/a^(7/4)-1/4*c^(3 
/4)*arctanh(2^(1/2)*a^(1/4)*c^(1/4)*x/(a^(1/2)+c^(1/2)*x^2))*2^(1/2)/a^(7/ 
4)
 

Mathematica [A] (verified)

Time = 0.03 (sec) , antiderivative size = 188, normalized size of antiderivative = 1.31 \[ \int \frac {1}{x^4 \left (a+c x^4\right )} \, dx=\frac {-8 a^{3/4}+6 \sqrt {2} c^{3/4} x^3 \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )-6 \sqrt {2} c^{3/4} x^3 \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )+3 \sqrt {2} c^{3/4} x^3 \log \left (\sqrt {a}-\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {c} x^2\right )-3 \sqrt {2} c^{3/4} x^3 \log \left (\sqrt {a}+\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {c} x^2\right )}{24 a^{7/4} x^3} \] Input:

Integrate[1/(x^4*(a + c*x^4)),x]
 

Output:

(-8*a^(3/4) + 6*Sqrt[2]*c^(3/4)*x^3*ArcTan[1 - (Sqrt[2]*c^(1/4)*x)/a^(1/4) 
] - 6*Sqrt[2]*c^(3/4)*x^3*ArcTan[1 + (Sqrt[2]*c^(1/4)*x)/a^(1/4)] + 3*Sqrt 
[2]*c^(3/4)*x^3*Log[Sqrt[a] - Sqrt[2]*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^2] - 3 
*Sqrt[2]*c^(3/4)*x^3*Log[Sqrt[a] + Sqrt[2]*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^2 
])/(24*a^(7/4)*x^3)
 

Rubi [A] (verified)

Time = 0.64 (sec) , antiderivative size = 217, normalized size of antiderivative = 1.51, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.692, Rules used = {847, 755, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{x^4 \left (a+c x^4\right )} \, dx\)

\(\Big \downarrow \) 847

\(\displaystyle -\frac {c \int \frac {1}{c x^4+a}dx}{a}-\frac {1}{3 a x^3}\)

\(\Big \downarrow \) 755

\(\displaystyle -\frac {c \left (\frac {\int \frac {\sqrt {a}-\sqrt {c} x^2}{c x^4+a}dx}{2 \sqrt {a}}+\frac {\int \frac {\sqrt {c} x^2+\sqrt {a}}{c x^4+a}dx}{2 \sqrt {a}}\right )}{a}-\frac {1}{3 a x^3}\)

\(\Big \downarrow \) 1476

\(\displaystyle -\frac {c \left (\frac {\frac {\int \frac {1}{x^2-\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}+\frac {\sqrt {a}}{\sqrt {c}}}dx}{2 \sqrt {c}}+\frac {\int \frac {1}{x^2+\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}+\frac {\sqrt {a}}{\sqrt {c}}}dx}{2 \sqrt {c}}}{2 \sqrt {a}}+\frac {\int \frac {\sqrt {a}-\sqrt {c} x^2}{c x^4+a}dx}{2 \sqrt {a}}\right )}{a}-\frac {1}{3 a x^3}\)

\(\Big \downarrow \) 1082

\(\displaystyle -\frac {c \left (\frac {\int \frac {\sqrt {a}-\sqrt {c} x^2}{c x^4+a}dx}{2 \sqrt {a}}+\frac {\frac {\int \frac {1}{-\left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )^2-1}d\left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}-\frac {\int \frac {1}{-\left (\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )^2-1}d\left (\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}}{2 \sqrt {a}}\right )}{a}-\frac {1}{3 a x^3}\)

\(\Big \downarrow \) 217

\(\displaystyle -\frac {c \left (\frac {\int \frac {\sqrt {a}-\sqrt {c} x^2}{c x^4+a}dx}{2 \sqrt {a}}+\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}}{2 \sqrt {a}}\right )}{a}-\frac {1}{3 a x^3}\)

\(\Big \downarrow \) 1479

\(\displaystyle -\frac {c \left (\frac {-\frac {\int -\frac {\sqrt {2} \sqrt [4]{a}-2 \sqrt [4]{c} x}{\sqrt [4]{c} \left (x^2-\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}+\frac {\sqrt {a}}{\sqrt {c}}\right )}dx}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {2} \sqrt [4]{c} x+\sqrt [4]{a}\right )}{\sqrt [4]{c} \left (x^2+\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}+\frac {\sqrt {a}}{\sqrt {c}}\right )}dx}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}}{2 \sqrt {a}}+\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}}{2 \sqrt {a}}\right )}{a}-\frac {1}{3 a x^3}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {c \left (\frac {\frac {\int \frac {\sqrt {2} \sqrt [4]{a}-2 \sqrt [4]{c} x}{\sqrt [4]{c} \left (x^2-\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}+\frac {\sqrt {a}}{\sqrt {c}}\right )}dx}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {2} \sqrt [4]{c} x+\sqrt [4]{a}\right )}{\sqrt [4]{c} \left (x^2+\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}+\frac {\sqrt {a}}{\sqrt {c}}\right )}dx}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}}{2 \sqrt {a}}+\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}}{2 \sqrt {a}}\right )}{a}-\frac {1}{3 a x^3}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {c \left (\frac {\frac {\int \frac {\sqrt {2} \sqrt [4]{a}-2 \sqrt [4]{c} x}{x^2-\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}+\frac {\sqrt {a}}{\sqrt {c}}}dx}{2 \sqrt {2} \sqrt [4]{a} \sqrt {c}}+\frac {\int \frac {\sqrt {2} \sqrt [4]{c} x+\sqrt [4]{a}}{x^2+\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}+\frac {\sqrt {a}}{\sqrt {c}}}dx}{2 \sqrt [4]{a} \sqrt {c}}}{2 \sqrt {a}}+\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}}{2 \sqrt {a}}\right )}{a}-\frac {1}{3 a x^3}\)

\(\Big \downarrow \) 1103

\(\displaystyle -\frac {c \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}}{2 \sqrt {a}}+\frac {\frac {\log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {a}+\sqrt {c} x^2\right )}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}-\frac {\log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {a}+\sqrt {c} x^2\right )}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}}{2 \sqrt {a}}\right )}{a}-\frac {1}{3 a x^3}\)

Input:

Int[1/(x^4*(a + c*x^4)),x]
 

Output:

-1/3*1/(a*x^3) - (c*((-(ArcTan[1 - (Sqrt[2]*c^(1/4)*x)/a^(1/4)]/(Sqrt[2]*a 
^(1/4)*c^(1/4))) + ArcTan[1 + (Sqrt[2]*c^(1/4)*x)/a^(1/4)]/(Sqrt[2]*a^(1/4 
)*c^(1/4)))/(2*Sqrt[a]) + (-1/2*Log[Sqrt[a] - Sqrt[2]*a^(1/4)*c^(1/4)*x + 
Sqrt[c]*x^2]/(Sqrt[2]*a^(1/4)*c^(1/4)) + Log[Sqrt[a] + Sqrt[2]*a^(1/4)*c^( 
1/4)*x + Sqrt[c]*x^2]/(2*Sqrt[2]*a^(1/4)*c^(1/4)))/(2*Sqrt[a])))/a
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 755
Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2] 
], s = Denominator[Rt[a/b, 2]]}, Simp[1/(2*r)   Int[(r - s*x^2)/(a + b*x^4) 
, x], x] + Simp[1/(2*r)   Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[{a, 
 b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] & 
& AtomQ[SplitProduct[SumBaseQ, b]]))
 

rule 847
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c*x 
)^(m + 1)*((a + b*x^n)^(p + 1)/(a*c*(m + 1))), x] - Simp[b*((m + n*(p + 1) 
+ 1)/(a*c^n*(m + 1)))   Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; FreeQ[{a 
, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p 
, x]
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.65 (sec) , antiderivative size = 56, normalized size of antiderivative = 0.39

method result size
risch \(-\frac {1}{3 a \,x^{3}}+\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (a^{7} \textit {\_Z}^{4}+c^{3}\right )}{\sum }\textit {\_R} \ln \left (\left (-5 \textit {\_R}^{4} a^{7}-4 c^{3}\right ) x -a^{2} c^{2} \textit {\_R} \right )\right )}{4}\) \(56\)
default \(-\frac {1}{3 a \,x^{3}}-\frac {c \left (\frac {a}{c}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {x^{2}+\left (\frac {a}{c}\right )^{\frac {1}{4}} x \sqrt {2}+\sqrt {\frac {a}{c}}}{x^{2}-\left (\frac {a}{c}\right )^{\frac {1}{4}} x \sqrt {2}+\sqrt {\frac {a}{c}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{c}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{c}\right )^{\frac {1}{4}}}-1\right )\right )}{8 a^{2}}\) \(112\)

Input:

int(1/x^4/(c*x^4+a),x,method=_RETURNVERBOSE)
 

Output:

-1/3/a/x^3+1/4*sum(_R*ln((-5*_R^4*a^7-4*c^3)*x-a^2*c^2*_R),_R=RootOf(_Z^4* 
a^7+c^3))
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.09 (sec) , antiderivative size = 153, normalized size of antiderivative = 1.06 \[ \int \frac {1}{x^4 \left (a+c x^4\right )} \, dx=-\frac {3 \, a x^{3} \left (-\frac {c^{3}}{a^{7}}\right )^{\frac {1}{4}} \log \left (a^{2} \left (-\frac {c^{3}}{a^{7}}\right )^{\frac {1}{4}} + c x\right ) + 3 i \, a x^{3} \left (-\frac {c^{3}}{a^{7}}\right )^{\frac {1}{4}} \log \left (i \, a^{2} \left (-\frac {c^{3}}{a^{7}}\right )^{\frac {1}{4}} + c x\right ) - 3 i \, a x^{3} \left (-\frac {c^{3}}{a^{7}}\right )^{\frac {1}{4}} \log \left (-i \, a^{2} \left (-\frac {c^{3}}{a^{7}}\right )^{\frac {1}{4}} + c x\right ) - 3 \, a x^{3} \left (-\frac {c^{3}}{a^{7}}\right )^{\frac {1}{4}} \log \left (-a^{2} \left (-\frac {c^{3}}{a^{7}}\right )^{\frac {1}{4}} + c x\right ) + 4}{12 \, a x^{3}} \] Input:

integrate(1/x^4/(c*x^4+a),x, algorithm="fricas")
 

Output:

-1/12*(3*a*x^3*(-c^3/a^7)^(1/4)*log(a^2*(-c^3/a^7)^(1/4) + c*x) + 3*I*a*x^ 
3*(-c^3/a^7)^(1/4)*log(I*a^2*(-c^3/a^7)^(1/4) + c*x) - 3*I*a*x^3*(-c^3/a^7 
)^(1/4)*log(-I*a^2*(-c^3/a^7)^(1/4) + c*x) - 3*a*x^3*(-c^3/a^7)^(1/4)*log( 
-a^2*(-c^3/a^7)^(1/4) + c*x) + 4)/(a*x^3)
 

Sympy [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 32, normalized size of antiderivative = 0.22 \[ \int \frac {1}{x^4 \left (a+c x^4\right )} \, dx=\operatorname {RootSum} {\left (256 t^{4} a^{7} + c^{3}, \left ( t \mapsto t \log {\left (- \frac {4 t a^{2}}{c} + x \right )} \right )\right )} - \frac {1}{3 a x^{3}} \] Input:

integrate(1/x**4/(c*x**4+a),x)
 

Output:

RootSum(256*_t**4*a**7 + c**3, Lambda(_t, _t*log(-4*_t*a**2/c + x))) - 1/( 
3*a*x**3)
 

Maxima [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 184, normalized size of antiderivative = 1.28 \[ \int \frac {1}{x^4 \left (a+c x^4\right )} \, dx=-\frac {\frac {2 \, \sqrt {2} c \arctan \left (\frac {\sqrt {2} {\left (2 \, \sqrt {c} x + \sqrt {2} a^{\frac {1}{4}} c^{\frac {1}{4}}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {c}}}\right )}{\sqrt {a} \sqrt {\sqrt {a} \sqrt {c}}} + \frac {2 \, \sqrt {2} c \arctan \left (\frac {\sqrt {2} {\left (2 \, \sqrt {c} x - \sqrt {2} a^{\frac {1}{4}} c^{\frac {1}{4}}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {c}}}\right )}{\sqrt {a} \sqrt {\sqrt {a} \sqrt {c}}} + \frac {\sqrt {2} c^{\frac {3}{4}} \log \left (\sqrt {c} x^{2} + \sqrt {2} a^{\frac {1}{4}} c^{\frac {1}{4}} x + \sqrt {a}\right )}{a^{\frac {3}{4}}} - \frac {\sqrt {2} c^{\frac {3}{4}} \log \left (\sqrt {c} x^{2} - \sqrt {2} a^{\frac {1}{4}} c^{\frac {1}{4}} x + \sqrt {a}\right )}{a^{\frac {3}{4}}}}{8 \, a} - \frac {1}{3 \, a x^{3}} \] Input:

integrate(1/x^4/(c*x^4+a),x, algorithm="maxima")
 

Output:

-1/8*(2*sqrt(2)*c*arctan(1/2*sqrt(2)*(2*sqrt(c)*x + sqrt(2)*a^(1/4)*c^(1/4 
))/sqrt(sqrt(a)*sqrt(c)))/(sqrt(a)*sqrt(sqrt(a)*sqrt(c))) + 2*sqrt(2)*c*ar 
ctan(1/2*sqrt(2)*(2*sqrt(c)*x - sqrt(2)*a^(1/4)*c^(1/4))/sqrt(sqrt(a)*sqrt 
(c)))/(sqrt(a)*sqrt(sqrt(a)*sqrt(c))) + sqrt(2)*c^(3/4)*log(sqrt(c)*x^2 + 
sqrt(2)*a^(1/4)*c^(1/4)*x + sqrt(a))/a^(3/4) - sqrt(2)*c^(3/4)*log(sqrt(c) 
*x^2 - sqrt(2)*a^(1/4)*c^(1/4)*x + sqrt(a))/a^(3/4))/a - 1/3/(a*x^3)
 

Giac [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 175, normalized size of antiderivative = 1.22 \[ \int \frac {1}{x^4 \left (a+c x^4\right )} \, dx=-\frac {\sqrt {2} \left (a c^{3}\right )^{\frac {1}{4}} \arctan \left (\frac {\sqrt {2} {\left (2 \, x + \sqrt {2} \left (\frac {a}{c}\right )^{\frac {1}{4}}\right )}}{2 \, \left (\frac {a}{c}\right )^{\frac {1}{4}}}\right )}{4 \, a^{2}} - \frac {\sqrt {2} \left (a c^{3}\right )^{\frac {1}{4}} \arctan \left (\frac {\sqrt {2} {\left (2 \, x - \sqrt {2} \left (\frac {a}{c}\right )^{\frac {1}{4}}\right )}}{2 \, \left (\frac {a}{c}\right )^{\frac {1}{4}}}\right )}{4 \, a^{2}} - \frac {\sqrt {2} \left (a c^{3}\right )^{\frac {1}{4}} \log \left (x^{2} + \sqrt {2} x \left (\frac {a}{c}\right )^{\frac {1}{4}} + \sqrt {\frac {a}{c}}\right )}{8 \, a^{2}} + \frac {\sqrt {2} \left (a c^{3}\right )^{\frac {1}{4}} \log \left (x^{2} - \sqrt {2} x \left (\frac {a}{c}\right )^{\frac {1}{4}} + \sqrt {\frac {a}{c}}\right )}{8 \, a^{2}} - \frac {1}{3 \, a x^{3}} \] Input:

integrate(1/x^4/(c*x^4+a),x, algorithm="giac")
 

Output:

-1/4*sqrt(2)*(a*c^3)^(1/4)*arctan(1/2*sqrt(2)*(2*x + sqrt(2)*(a/c)^(1/4))/ 
(a/c)^(1/4))/a^2 - 1/4*sqrt(2)*(a*c^3)^(1/4)*arctan(1/2*sqrt(2)*(2*x - sqr 
t(2)*(a/c)^(1/4))/(a/c)^(1/4))/a^2 - 1/8*sqrt(2)*(a*c^3)^(1/4)*log(x^2 + s 
qrt(2)*x*(a/c)^(1/4) + sqrt(a/c))/a^2 + 1/8*sqrt(2)*(a*c^3)^(1/4)*log(x^2 
- sqrt(2)*x*(a/c)^(1/4) + sqrt(a/c))/a^2 - 1/3/(a*x^3)
 

Mupad [B] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 51, normalized size of antiderivative = 0.35 \[ \int \frac {1}{x^4 \left (a+c x^4\right )} \, dx=\frac {{\left (-c\right )}^{3/4}\,\mathrm {atan}\left (\frac {{\left (-c\right )}^{1/4}\,x}{a^{1/4}}\right )}{2\,a^{7/4}}-\frac {1}{3\,a\,x^3}+\frac {{\left (-c\right )}^{3/4}\,\mathrm {atanh}\left (\frac {{\left (-c\right )}^{1/4}\,x}{a^{1/4}}\right )}{2\,a^{7/4}} \] Input:

int(1/(x^4*(a + c*x^4)),x)
 

Output:

((-c)^(3/4)*atan(((-c)^(1/4)*x)/a^(1/4)))/(2*a^(7/4)) - 1/(3*a*x^3) + ((-c 
)^(3/4)*atanh(((-c)^(1/4)*x)/a^(1/4)))/(2*a^(7/4))
 

Reduce [B] (verification not implemented)

Time = 0.22 (sec) , antiderivative size = 159, normalized size of antiderivative = 1.10 \[ \int \frac {1}{x^4 \left (a+c x^4\right )} \, dx=\frac {6 c^{\frac {3}{4}} a^{\frac {1}{4}} \sqrt {2}\, \mathit {atan} \left (\frac {c^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}-2 \sqrt {c}\, x}{c^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}}\right ) x^{3}-6 c^{\frac {3}{4}} a^{\frac {1}{4}} \sqrt {2}\, \mathit {atan} \left (\frac {c^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}+2 \sqrt {c}\, x}{c^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}}\right ) x^{3}+3 c^{\frac {3}{4}} a^{\frac {1}{4}} \sqrt {2}\, \mathrm {log}\left (-c^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}\, x +\sqrt {a}+\sqrt {c}\, x^{2}\right ) x^{3}-3 c^{\frac {3}{4}} a^{\frac {1}{4}} \sqrt {2}\, \mathrm {log}\left (c^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}\, x +\sqrt {a}+\sqrt {c}\, x^{2}\right ) x^{3}-8 a}{24 a^{2} x^{3}} \] Input:

int(1/x^4/(c*x^4+a),x)
 

Output:

(6*c**(3/4)*a**(1/4)*sqrt(2)*atan((c**(1/4)*a**(1/4)*sqrt(2) - 2*sqrt(c)*x 
)/(c**(1/4)*a**(1/4)*sqrt(2)))*x**3 - 6*c**(3/4)*a**(1/4)*sqrt(2)*atan((c* 
*(1/4)*a**(1/4)*sqrt(2) + 2*sqrt(c)*x)/(c**(1/4)*a**(1/4)*sqrt(2)))*x**3 + 
 3*c**(3/4)*a**(1/4)*sqrt(2)*log( - c**(1/4)*a**(1/4)*sqrt(2)*x + sqrt(a) 
+ sqrt(c)*x**2)*x**3 - 3*c**(3/4)*a**(1/4)*sqrt(2)*log(c**(1/4)*a**(1/4)*s 
qrt(2)*x + sqrt(a) + sqrt(c)*x**2)*x**3 - 8*a)/(24*a**2*x**3)