\(\int \frac {1}{(a+\frac {b}{x^3}) x^6} \, dx\) [439]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [A] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 13, antiderivative size = 124 \[ \int \frac {1}{\left (a+\frac {b}{x^3}\right ) x^6} \, dx=-\frac {1}{2 b x^2}+\frac {a^{2/3} \arctan \left (\frac {\sqrt [3]{b}-2 \sqrt [3]{a} x}{\sqrt {3} \sqrt [3]{b}}\right )}{\sqrt {3} b^{5/3}}-\frac {a^{2/3} \log \left (\sqrt [3]{b}+\sqrt [3]{a} x\right )}{3 b^{5/3}}+\frac {a^{2/3} \log \left (b^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3} x^2\right )}{6 b^{5/3}} \] Output:

-1/2/b/x^2+1/3*a^(2/3)*arctan(1/3*(b^(1/3)-2*a^(1/3)*x)*3^(1/2)/b^(1/3))*3 
^(1/2)/b^(5/3)-1/3*a^(2/3)*ln(b^(1/3)+a^(1/3)*x)/b^(5/3)+1/6*a^(2/3)*ln(b^ 
(2/3)-a^(1/3)*b^(1/3)*x+a^(2/3)*x^2)/b^(5/3)
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 0.01 (sec) , antiderivative size = 119, normalized size of antiderivative = 0.96 \[ \int \frac {1}{\left (a+\frac {b}{x^3}\right ) x^6} \, dx=\frac {-3 b^{2/3}+2 \sqrt {3} a^{2/3} x^2 \arctan \left (\frac {1-\frac {2 \sqrt [3]{a} x}{\sqrt [3]{b}}}{\sqrt {3}}\right )-2 a^{2/3} x^2 \log \left (\sqrt [3]{b}+\sqrt [3]{a} x\right )+a^{2/3} x^2 \log \left (b^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3} x^2\right )}{6 b^{5/3} x^2} \] Input:

Integrate[1/((a + b/x^3)*x^6),x]
 

Output:

(-3*b^(2/3) + 2*Sqrt[3]*a^(2/3)*x^2*ArcTan[(1 - (2*a^(1/3)*x)/b^(1/3))/Sqr 
t[3]] - 2*a^(2/3)*x^2*Log[b^(1/3) + a^(1/3)*x] + a^(2/3)*x^2*Log[b^(2/3) - 
 a^(1/3)*b^(1/3)*x + a^(2/3)*x^2])/(6*b^(5/3)*x^2)
 

Rubi [A] (verified)

Time = 0.47 (sec) , antiderivative size = 128, normalized size of antiderivative = 1.03, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.769, Rules used = {795, 847, 750, 16, 1142, 25, 27, 1082, 217, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{x^6 \left (a+\frac {b}{x^3}\right )} \, dx\)

\(\Big \downarrow \) 795

\(\displaystyle \int \frac {1}{x^3 \left (a x^3+b\right )}dx\)

\(\Big \downarrow \) 847

\(\displaystyle -\frac {a \int \frac {1}{a x^3+b}dx}{b}-\frac {1}{2 b x^2}\)

\(\Big \downarrow \) 750

\(\displaystyle -\frac {a \left (\frac {\int \frac {2 \sqrt [3]{b}-\sqrt [3]{a} x}{a^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3}}dx}{3 b^{2/3}}+\frac {\int \frac {1}{\sqrt [3]{a} x+\sqrt [3]{b}}dx}{3 b^{2/3}}\right )}{b}-\frac {1}{2 b x^2}\)

\(\Big \downarrow \) 16

\(\displaystyle -\frac {a \left (\frac {\int \frac {2 \sqrt [3]{b}-\sqrt [3]{a} x}{a^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3}}dx}{3 b^{2/3}}+\frac {\log \left (\sqrt [3]{a} x+\sqrt [3]{b}\right )}{3 \sqrt [3]{a} b^{2/3}}\right )}{b}-\frac {1}{2 b x^2}\)

\(\Big \downarrow \) 1142

\(\displaystyle -\frac {a \left (\frac {\frac {3}{2} \sqrt [3]{b} \int \frac {1}{a^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3}}dx-\frac {\int -\frac {\sqrt [3]{a} \left (\sqrt [3]{b}-2 \sqrt [3]{a} x\right )}{a^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3}}dx}{2 \sqrt [3]{a}}}{3 b^{2/3}}+\frac {\log \left (\sqrt [3]{a} x+\sqrt [3]{b}\right )}{3 \sqrt [3]{a} b^{2/3}}\right )}{b}-\frac {1}{2 b x^2}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {a \left (\frac {\frac {3}{2} \sqrt [3]{b} \int \frac {1}{a^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3}}dx+\frac {\int \frac {\sqrt [3]{a} \left (\sqrt [3]{b}-2 \sqrt [3]{a} x\right )}{a^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3}}dx}{2 \sqrt [3]{a}}}{3 b^{2/3}}+\frac {\log \left (\sqrt [3]{a} x+\sqrt [3]{b}\right )}{3 \sqrt [3]{a} b^{2/3}}\right )}{b}-\frac {1}{2 b x^2}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {a \left (\frac {\frac {3}{2} \sqrt [3]{b} \int \frac {1}{a^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3}}dx+\frac {1}{2} \int \frac {\sqrt [3]{b}-2 \sqrt [3]{a} x}{a^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3}}dx}{3 b^{2/3}}+\frac {\log \left (\sqrt [3]{a} x+\sqrt [3]{b}\right )}{3 \sqrt [3]{a} b^{2/3}}\right )}{b}-\frac {1}{2 b x^2}\)

\(\Big \downarrow \) 1082

\(\displaystyle -\frac {a \left (\frac {\frac {1}{2} \int \frac {\sqrt [3]{b}-2 \sqrt [3]{a} x}{a^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3}}dx+\frac {3 \int \frac {1}{-\left (1-\frac {2 \sqrt [3]{a} x}{\sqrt [3]{b}}\right )^2-3}d\left (1-\frac {2 \sqrt [3]{a} x}{\sqrt [3]{b}}\right )}{\sqrt [3]{a}}}{3 b^{2/3}}+\frac {\log \left (\sqrt [3]{a} x+\sqrt [3]{b}\right )}{3 \sqrt [3]{a} b^{2/3}}\right )}{b}-\frac {1}{2 b x^2}\)

\(\Big \downarrow \) 217

\(\displaystyle -\frac {a \left (\frac {\frac {1}{2} \int \frac {\sqrt [3]{b}-2 \sqrt [3]{a} x}{a^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3}}dx-\frac {\sqrt {3} \arctan \left (\frac {1-\frac {2 \sqrt [3]{a} x}{\sqrt [3]{b}}}{\sqrt {3}}\right )}{\sqrt [3]{a}}}{3 b^{2/3}}+\frac {\log \left (\sqrt [3]{a} x+\sqrt [3]{b}\right )}{3 \sqrt [3]{a} b^{2/3}}\right )}{b}-\frac {1}{2 b x^2}\)

\(\Big \downarrow \) 1103

\(\displaystyle -\frac {a \left (\frac {-\frac {\log \left (a^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3}\right )}{2 \sqrt [3]{a}}-\frac {\sqrt {3} \arctan \left (\frac {1-\frac {2 \sqrt [3]{a} x}{\sqrt [3]{b}}}{\sqrt {3}}\right )}{\sqrt [3]{a}}}{3 b^{2/3}}+\frac {\log \left (\sqrt [3]{a} x+\sqrt [3]{b}\right )}{3 \sqrt [3]{a} b^{2/3}}\right )}{b}-\frac {1}{2 b x^2}\)

Input:

Int[1/((a + b/x^3)*x^6),x]
 

Output:

-1/2*1/(b*x^2) - (a*(Log[b^(1/3) + a^(1/3)*x]/(3*a^(1/3)*b^(2/3)) + (-((Sq 
rt[3]*ArcTan[(1 - (2*a^(1/3)*x)/b^(1/3))/Sqrt[3]])/a^(1/3)) - Log[b^(2/3) 
- a^(1/3)*b^(1/3)*x + a^(2/3)*x^2]/(2*a^(1/3)))/(3*b^(2/3))))/b
 

Defintions of rubi rules used

rule 16
Int[(c_.)/((a_.) + (b_.)*(x_)), x_Symbol] :> Simp[c*(Log[RemoveContent[a + 
b*x, x]]/b), x] /; FreeQ[{a, b, c}, x]
 

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 750
Int[((a_) + (b_.)*(x_)^3)^(-1), x_Symbol] :> Simp[1/(3*Rt[a, 3]^2)   Int[1/ 
(Rt[a, 3] + Rt[b, 3]*x), x], x] + Simp[1/(3*Rt[a, 3]^2)   Int[(2*Rt[a, 3] - 
 Rt[b, 3]*x)/(Rt[a, 3]^2 - Rt[a, 3]*Rt[b, 3]*x + Rt[b, 3]^2*x^2), x], x] /; 
 FreeQ[{a, b}, x]
 

rule 795
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Int[x^(m + n*p)* 
(b + a/x^n)^p, x] /; FreeQ[{a, b, m, n}, x] && IntegerQ[p] && NegQ[n]
 

rule 847
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c*x 
)^(m + 1)*((a + b*x^n)^(p + 1)/(a*c*(m + 1))), x] - Simp[b*((m + n*(p + 1) 
+ 1)/(a*c^n*(m + 1)))   Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; FreeQ[{a 
, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p 
, x]
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1142
Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[(2*c*d - b*e)/(2*c)   Int[1/(a + b*x + c*x^2), x], x] + Simp[e/(2*c) 
Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.09 (sec) , antiderivative size = 54, normalized size of antiderivative = 0.44

method result size
risch \(-\frac {1}{2 b \,x^{2}}+\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (b^{5} \textit {\_Z}^{3}+a^{2}\right )}{\sum }\textit {\_R} \ln \left (\left (-4 \textit {\_R}^{3} b^{5}-3 a^{2}\right ) x -a \,b^{2} \textit {\_R} \right )\right )}{3}\) \(54\)
default \(-\frac {1}{2 b \,x^{2}}-\frac {\left (\frac {\ln \left (x +\left (\frac {b}{a}\right )^{\frac {1}{3}}\right )}{3 a \left (\frac {b}{a}\right )^{\frac {2}{3}}}-\frac {\ln \left (x^{2}-\left (\frac {b}{a}\right )^{\frac {1}{3}} x +\left (\frac {b}{a}\right )^{\frac {2}{3}}\right )}{6 a \left (\frac {b}{a}\right )^{\frac {2}{3}}}+\frac {\sqrt {3}\, \arctan \left (\frac {\sqrt {3}\, \left (\frac {2 x}{\left (\frac {b}{a}\right )^{\frac {1}{3}}}-1\right )}{3}\right )}{3 a \left (\frac {b}{a}\right )^{\frac {2}{3}}}\right ) a}{b}\) \(106\)

Input:

int(1/(a+b/x^3)/x^6,x,method=_RETURNVERBOSE)
 

Output:

-1/2/b/x^2+1/3*sum(_R*ln((-4*_R^3*b^5-3*a^2)*x-a*b^2*_R),_R=RootOf(_Z^3*b^ 
5+a^2))
 

Fricas [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 143, normalized size of antiderivative = 1.15 \[ \int \frac {1}{\left (a+\frac {b}{x^3}\right ) x^6} \, dx=\frac {2 \, \sqrt {3} x^{2} \left (-\frac {a^{2}}{b^{2}}\right )^{\frac {1}{3}} \arctan \left (\frac {2 \, \sqrt {3} b x \left (-\frac {a^{2}}{b^{2}}\right )^{\frac {2}{3}} - \sqrt {3} a}{3 \, a}\right ) - x^{2} \left (-\frac {a^{2}}{b^{2}}\right )^{\frac {1}{3}} \log \left (a^{2} x^{2} + a b x \left (-\frac {a^{2}}{b^{2}}\right )^{\frac {1}{3}} + b^{2} \left (-\frac {a^{2}}{b^{2}}\right )^{\frac {2}{3}}\right ) + 2 \, x^{2} \left (-\frac {a^{2}}{b^{2}}\right )^{\frac {1}{3}} \log \left (a x - b \left (-\frac {a^{2}}{b^{2}}\right )^{\frac {1}{3}}\right ) - 3}{6 \, b x^{2}} \] Input:

integrate(1/(a+b/x^3)/x^6,x, algorithm="fricas")
 

Output:

1/6*(2*sqrt(3)*x^2*(-a^2/b^2)^(1/3)*arctan(1/3*(2*sqrt(3)*b*x*(-a^2/b^2)^( 
2/3) - sqrt(3)*a)/a) - x^2*(-a^2/b^2)^(1/3)*log(a^2*x^2 + a*b*x*(-a^2/b^2) 
^(1/3) + b^2*(-a^2/b^2)^(2/3)) + 2*x^2*(-a^2/b^2)^(1/3)*log(a*x - b*(-a^2/ 
b^2)^(1/3)) - 3)/(b*x^2)
 

Sympy [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 32, normalized size of antiderivative = 0.26 \[ \int \frac {1}{\left (a+\frac {b}{x^3}\right ) x^6} \, dx=\operatorname {RootSum} {\left (27 t^{3} b^{5} + a^{2}, \left ( t \mapsto t \log {\left (- \frac {3 t b^{2}}{a} + x \right )} \right )\right )} - \frac {1}{2 b x^{2}} \] Input:

integrate(1/(a+b/x**3)/x**6,x)
 

Output:

RootSum(27*_t**3*b**5 + a**2, Lambda(_t, _t*log(-3*_t*b**2/a + x))) - 1/(2 
*b*x**2)
 

Maxima [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 106, normalized size of antiderivative = 0.85 \[ \int \frac {1}{\left (a+\frac {b}{x^3}\right ) x^6} \, dx=-\frac {\sqrt {3} \arctan \left (\frac {\sqrt {3} {\left (2 \, x - \left (\frac {b}{a}\right )^{\frac {1}{3}}\right )}}{3 \, \left (\frac {b}{a}\right )^{\frac {1}{3}}}\right )}{3 \, b \left (\frac {b}{a}\right )^{\frac {2}{3}}} + \frac {\log \left (x^{2} - x \left (\frac {b}{a}\right )^{\frac {1}{3}} + \left (\frac {b}{a}\right )^{\frac {2}{3}}\right )}{6 \, b \left (\frac {b}{a}\right )^{\frac {2}{3}}} - \frac {\log \left (x + \left (\frac {b}{a}\right )^{\frac {1}{3}}\right )}{3 \, b \left (\frac {b}{a}\right )^{\frac {2}{3}}} - \frac {1}{2 \, b x^{2}} \] Input:

integrate(1/(a+b/x^3)/x^6,x, algorithm="maxima")
 

Output:

-1/3*sqrt(3)*arctan(1/3*sqrt(3)*(2*x - (b/a)^(1/3))/(b/a)^(1/3))/(b*(b/a)^ 
(2/3)) + 1/6*log(x^2 - x*(b/a)^(1/3) + (b/a)^(2/3))/(b*(b/a)^(2/3)) - 1/3* 
log(x + (b/a)^(1/3))/(b*(b/a)^(2/3)) - 1/2/(b*x^2)
 

Giac [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 115, normalized size of antiderivative = 0.93 \[ \int \frac {1}{\left (a+\frac {b}{x^3}\right ) x^6} \, dx=\frac {a \left (-\frac {b}{a}\right )^{\frac {1}{3}} \log \left ({\left | x - \left (-\frac {b}{a}\right )^{\frac {1}{3}} \right |}\right )}{3 \, b^{2}} - \frac {\sqrt {3} \left (-a^{2} b\right )^{\frac {1}{3}} \arctan \left (\frac {\sqrt {3} {\left (2 \, x + \left (-\frac {b}{a}\right )^{\frac {1}{3}}\right )}}{3 \, \left (-\frac {b}{a}\right )^{\frac {1}{3}}}\right )}{3 \, b^{2}} - \frac {\left (-a^{2} b\right )^{\frac {1}{3}} \log \left (x^{2} + x \left (-\frac {b}{a}\right )^{\frac {1}{3}} + \left (-\frac {b}{a}\right )^{\frac {2}{3}}\right )}{6 \, b^{2}} - \frac {1}{2 \, b x^{2}} \] Input:

integrate(1/(a+b/x^3)/x^6,x, algorithm="giac")
 

Output:

1/3*a*(-b/a)^(1/3)*log(abs(x - (-b/a)^(1/3)))/b^2 - 1/3*sqrt(3)*(-a^2*b)^( 
1/3)*arctan(1/3*sqrt(3)*(2*x + (-b/a)^(1/3))/(-b/a)^(1/3))/b^2 - 1/6*(-a^2 
*b)^(1/3)*log(x^2 + x*(-b/a)^(1/3) + (-b/a)^(2/3))/b^2 - 1/2/(b*x^2)
 

Mupad [B] (verification not implemented)

Time = 0.25 (sec) , antiderivative size = 128, normalized size of antiderivative = 1.03 \[ \int \frac {1}{\left (a+\frac {b}{x^3}\right ) x^6} \, dx=\frac {a^{2/3}\,\ln \left ({\left (-b\right )}^{7/3}-a^{1/3}\,b^2\,x\right )}{3\,{\left (-b\right )}^{5/3}}-\frac {1}{2\,b\,x^2}-\frac {a^{2/3}\,\ln \left (3\,a^3\,b^2\,x+3\,a^{8/3}\,{\left (-b\right )}^{7/3}\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}{3\,{\left (-b\right )}^{5/3}}+\frac {a^{2/3}\,\ln \left (3\,a^3\,b^2\,x-9\,a^{8/3}\,{\left (-b\right )}^{7/3}\,\left (-\frac {1}{6}+\frac {\sqrt {3}\,1{}\mathrm {i}}{6}\right )\right )\,\left (-\frac {1}{6}+\frac {\sqrt {3}\,1{}\mathrm {i}}{6}\right )}{{\left (-b\right )}^{5/3}} \] Input:

int(1/(x^6*(a + b/x^3)),x)
 

Output:

(a^(2/3)*log((-b)^(7/3) - a^(1/3)*b^2*x))/(3*(-b)^(5/3)) - 1/(2*b*x^2) - ( 
a^(2/3)*log(3*a^3*b^2*x + 3*a^(8/3)*(-b)^(7/3)*((3^(1/2)*1i)/2 + 1/2))*((3 
^(1/2)*1i)/2 + 1/2))/(3*(-b)^(5/3)) + (a^(2/3)*log(3*a^3*b^2*x - 9*a^(8/3) 
*(-b)^(7/3)*((3^(1/2)*1i)/6 - 1/6))*((3^(1/2)*1i)/6 - 1/6))/(-b)^(5/3)
 

Reduce [B] (verification not implemented)

Time = 0.24 (sec) , antiderivative size = 98, normalized size of antiderivative = 0.79 \[ \int \frac {1}{\left (a+\frac {b}{x^3}\right ) x^6} \, dx=\frac {-2 b^{\frac {1}{3}} \sqrt {3}\, \mathit {atan} \left (\frac {2 a^{\frac {1}{3}} x -b^{\frac {1}{3}}}{b^{\frac {1}{3}} \sqrt {3}}\right ) a \,x^{2}-3 a^{\frac {1}{3}} b +b^{\frac {1}{3}} \mathrm {log}\left (a^{\frac {2}{3}} x^{2}-b^{\frac {1}{3}} a^{\frac {1}{3}} x +b^{\frac {2}{3}}\right ) a \,x^{2}-2 b^{\frac {1}{3}} \mathrm {log}\left (a^{\frac {1}{3}} x +b^{\frac {1}{3}}\right ) a \,x^{2}}{6 a^{\frac {1}{3}} b^{2} x^{2}} \] Input:

int(1/(a+b/x^3)/x^6,x)
 

Output:

( - 2*b**(1/3)*sqrt(3)*atan((2*a**(1/3)*x - b**(1/3))/(b**(1/3)*sqrt(3)))* 
a*x**2 - 3*a**(1/3)*b + b**(1/3)*log(a**(2/3)*x**2 - b**(1/3)*a**(1/3)*x + 
 b**(2/3))*a*x**2 - 2*b**(1/3)*log(a**(1/3)*x + b**(1/3))*a*x**2)/(6*a**(1 
/3)*b**2*x**2)