\(\int \frac {1}{\sqrt {a+\frac {b}{x^3}} x^6} \, dx\) [497]

Optimal result
Mathematica [C] (verified)
Rubi [A] (warning: unable to verify)
Maple [B] (verified)
Fricas [A] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 15, antiderivative size = 520 \[ \int \frac {1}{\sqrt {a+\frac {b}{x^3}} x^6} \, dx=\frac {8 a \sqrt {a+\frac {b}{x^3}}}{7 b^{5/3} \left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )}-\frac {2 \sqrt {a+\frac {b}{x^3}}}{7 b x^2}-\frac {4 \sqrt [4]{3} \sqrt {2-\sqrt {3}} a^{4/3} \left (\sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right ) \sqrt {\frac {a^{2/3}+\frac {b^{2/3}}{x^2}-\frac {\sqrt [3]{a} \sqrt [3]{b}}{x}}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )^2}} E\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}}{\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}}\right )|-7-4 \sqrt {3}\right )}{7 b^{5/3} \sqrt {a+\frac {b}{x^3}} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )^2}}}+\frac {8 \sqrt {2} a^{4/3} \left (\sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right ) \sqrt {\frac {a^{2/3}+\frac {b^{2/3}}{x^2}-\frac {\sqrt [3]{a} \sqrt [3]{b}}{x}}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}}{\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}}\right ),-7-4 \sqrt {3}\right )}{7 \sqrt [4]{3} b^{5/3} \sqrt {a+\frac {b}{x^3}} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )^2}}} \] Output:

8/7*a*(a+b/x^3)^(1/2)/b^(5/3)/((1+3^(1/2))*a^(1/3)+b^(1/3)/x)-2/7*(a+b/x^3 
)^(1/2)/b/x^2-4/7*3^(1/4)*(1/2*6^(1/2)-1/2*2^(1/2))*a^(4/3)*(a^(1/3)+b^(1/ 
3)/x)*((a^(2/3)+b^(2/3)/x^2-a^(1/3)*b^(1/3)/x)/((1+3^(1/2))*a^(1/3)+b^(1/3 
)/x)^2)^(1/2)*EllipticE(((1-3^(1/2))*a^(1/3)+b^(1/3)/x)/((1+3^(1/2))*a^(1/ 
3)+b^(1/3)/x),I*3^(1/2)+2*I)/b^(5/3)/(a+b/x^3)^(1/2)/(a^(1/3)*(a^(1/3)+b^( 
1/3)/x)/((1+3^(1/2))*a^(1/3)+b^(1/3)/x)^2)^(1/2)+8/21*2^(1/2)*a^(4/3)*(a^( 
1/3)+b^(1/3)/x)*((a^(2/3)+b^(2/3)/x^2-a^(1/3)*b^(1/3)/x)/((1+3^(1/2))*a^(1 
/3)+b^(1/3)/x)^2)^(1/2)*EllipticF(((1-3^(1/2))*a^(1/3)+b^(1/3)/x)/((1+3^(1 
/2))*a^(1/3)+b^(1/3)/x),I*3^(1/2)+2*I)*3^(3/4)/b^(5/3)/(a+b/x^3)^(1/2)/(a^ 
(1/3)*(a^(1/3)+b^(1/3)/x)/((1+3^(1/2))*a^(1/3)+b^(1/3)/x)^2)^(1/2)
                                                                                    
                                                                                    
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.01 (sec) , antiderivative size = 51, normalized size of antiderivative = 0.10 \[ \int \frac {1}{\sqrt {a+\frac {b}{x^3}} x^6} \, dx=-\frac {2 \sqrt {1+\frac {a x^3}{b}} \operatorname {Hypergeometric2F1}\left (-\frac {7}{6},\frac {1}{2},-\frac {1}{6},-\frac {a x^3}{b}\right )}{7 \sqrt {a+\frac {b}{x^3}} x^5} \] Input:

Integrate[1/(Sqrt[a + b/x^3]*x^6),x]
 

Output:

(-2*Sqrt[1 + (a*x^3)/b]*Hypergeometric2F1[-7/6, 1/2, -1/6, -((a*x^3)/b)])/ 
(7*Sqrt[a + b/x^3]*x^5)
 

Rubi [A] (warning: unable to verify)

Time = 0.90 (sec) , antiderivative size = 544, normalized size of antiderivative = 1.05, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {858, 843, 832, 759, 2416}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{x^6 \sqrt {a+\frac {b}{x^3}}} \, dx\)

\(\Big \downarrow \) 858

\(\displaystyle -\int \frac {1}{\sqrt {a+\frac {b}{x^3}} x^4}d\frac {1}{x}\)

\(\Big \downarrow \) 843

\(\displaystyle \frac {4 a \int \frac {1}{\sqrt {a+\frac {b}{x^3}} x}d\frac {1}{x}}{7 b}-\frac {2 \sqrt {a+\frac {b}{x^3}}}{7 b x^2}\)

\(\Big \downarrow \) 832

\(\displaystyle \frac {4 a \left (\frac {\int \frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}}{\sqrt {a+\frac {b}{x^3}}}d\frac {1}{x}}{\sqrt [3]{b}}-\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a} \int \frac {1}{\sqrt {a+\frac {b}{x^3}}}d\frac {1}{x}}{\sqrt [3]{b}}\right )}{7 b}-\frac {2 \sqrt {a+\frac {b}{x^3}}}{7 b x^2}\)

\(\Big \downarrow \) 759

\(\displaystyle \frac {4 a \left (\frac {\int \frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}}{\sqrt {a+\frac {b}{x^3}}}d\frac {1}{x}}{\sqrt [3]{b}}-\frac {2 \left (1-\sqrt {3}\right ) \sqrt {2+\sqrt {3}} \sqrt [3]{a} \left (\sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right ) \sqrt {\frac {a^{2/3}-\frac {\sqrt [3]{a} \sqrt [3]{b}}{x}+\frac {b^{2/3}}{x^2}}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}}{\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} b^{2/3} \sqrt {a+\frac {b}{x^3}} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )^2}}}\right )}{7 b}-\frac {2 \sqrt {a+\frac {b}{x^3}}}{7 b x^2}\)

\(\Big \downarrow \) 2416

\(\displaystyle \frac {4 a \left (\frac {\frac {2 \sqrt {a+\frac {b}{x^3}}}{\sqrt [3]{b} \left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )}-\frac {\sqrt [4]{3} \sqrt {2-\sqrt {3}} \sqrt [3]{a} \left (\sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right ) \sqrt {\frac {a^{2/3}-\frac {\sqrt [3]{a} \sqrt [3]{b}}{x}+\frac {b^{2/3}}{x^2}}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )^2}} E\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}}{\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}}\right )|-7-4 \sqrt {3}\right )}{\sqrt [3]{b} \sqrt {a+\frac {b}{x^3}} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )^2}}}}{\sqrt [3]{b}}-\frac {2 \left (1-\sqrt {3}\right ) \sqrt {2+\sqrt {3}} \sqrt [3]{a} \left (\sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right ) \sqrt {\frac {a^{2/3}-\frac {\sqrt [3]{a} \sqrt [3]{b}}{x}+\frac {b^{2/3}}{x^2}}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}}{\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} b^{2/3} \sqrt {a+\frac {b}{x^3}} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )^2}}}\right )}{7 b}-\frac {2 \sqrt {a+\frac {b}{x^3}}}{7 b x^2}\)

Input:

Int[1/(Sqrt[a + b/x^3]*x^6),x]
 

Output:

(-2*Sqrt[a + b/x^3])/(7*b*x^2) + (4*a*(((2*Sqrt[a + b/x^3])/(b^(1/3)*((1 + 
 Sqrt[3])*a^(1/3) + b^(1/3)/x)) - (3^(1/4)*Sqrt[2 - Sqrt[3]]*a^(1/3)*(a^(1 
/3) + b^(1/3)/x)*Sqrt[(a^(2/3) + b^(2/3)/x^2 - (a^(1/3)*b^(1/3))/x)/((1 + 
Sqrt[3])*a^(1/3) + b^(1/3)/x)^2]*EllipticE[ArcSin[((1 - Sqrt[3])*a^(1/3) + 
 b^(1/3)/x)/((1 + Sqrt[3])*a^(1/3) + b^(1/3)/x)], -7 - 4*Sqrt[3]])/(b^(1/3 
)*Sqrt[a + b/x^3]*Sqrt[(a^(1/3)*(a^(1/3) + b^(1/3)/x))/((1 + Sqrt[3])*a^(1 
/3) + b^(1/3)/x)^2]))/b^(1/3) - (2*(1 - Sqrt[3])*Sqrt[2 + Sqrt[3]]*a^(1/3) 
*(a^(1/3) + b^(1/3)/x)*Sqrt[(a^(2/3) + b^(2/3)/x^2 - (a^(1/3)*b^(1/3))/x)/ 
((1 + Sqrt[3])*a^(1/3) + b^(1/3)/x)^2]*EllipticF[ArcSin[((1 - Sqrt[3])*a^( 
1/3) + b^(1/3)/x)/((1 + Sqrt[3])*a^(1/3) + b^(1/3)/x)], -7 - 4*Sqrt[3]])/( 
3^(1/4)*b^(2/3)*Sqrt[a + b/x^3]*Sqrt[(a^(1/3)*(a^(1/3) + b^(1/3)/x))/((1 + 
 Sqrt[3])*a^(1/3) + b^(1/3)/x)^2])))/(7*b)
 

Defintions of rubi rules used

rule 759
Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], 
s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt[2 + Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s 
*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[s* 
((s + r*x)/((1 + Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 - Sqrt[3])*s 
+ r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x] & 
& PosQ[a]
 

rule 832
Int[(x_)/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3] 
], s = Denom[Rt[b/a, 3]]}, Simp[(-(1 - Sqrt[3]))*(s/r)   Int[1/Sqrt[a + b*x 
^3], x], x] + Simp[1/r   Int[((1 - Sqrt[3])*s + r*x)/Sqrt[a + b*x^3], x], x 
]] /; FreeQ[{a, b}, x] && PosQ[a]
 

rule 843
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(n 
 - 1)*(c*x)^(m - n + 1)*((a + b*x^n)^(p + 1)/(b*(m + n*p + 1))), x] - Simp[ 
a*c^n*((m - n + 1)/(b*(m + n*p + 1)))   Int[(c*x)^(m - n)*(a + b*x^n)^p, x] 
, x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n* 
p + 1, 0] && IntBinomialQ[a, b, c, n, m, p, x]
 

rule 858
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Subst[Int[(a + 
b/x^n)^p/x^(m + 2), x], x, 1/x] /; FreeQ[{a, b, p}, x] && ILtQ[n, 0] && Int 
egerQ[m]
 

rule 2416
Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = N 
umer[Simplify[(1 - Sqrt[3])*(d/c)]], s = Denom[Simplify[(1 - Sqrt[3])*(d/c) 
]]}, Simp[2*d*s^3*(Sqrt[a + b*x^3]/(a*r^2*((1 + Sqrt[3])*s + r*x))), x] - S 
imp[3^(1/4)*Sqrt[2 - Sqrt[3]]*d*s*(s + r*x)*(Sqrt[(s^2 - r*s*x + r^2*x^2)/( 
(1 + Sqrt[3])*s + r*x)^2]/(r^2*Sqrt[a + b*x^3]*Sqrt[s*((s + r*x)/((1 + Sqrt 
[3])*s + r*x)^2)]))*EllipticE[ArcSin[((1 - Sqrt[3])*s + r*x)/((1 + Sqrt[3]) 
*s + r*x)], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b, c, d}, x] && PosQ[a] && Eq 
Q[b*c^3 - 2*(5 - 3*Sqrt[3])*a*d^3, 0]
 
Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 1126 vs. \(2 (386 ) = 772\).

Time = 1.85 (sec) , antiderivative size = 1127, normalized size of antiderivative = 2.17

method result size
risch \(\text {Expression too large to display}\) \(1127\)
default \(\text {Expression too large to display}\) \(3300\)

Input:

int(1/(a+b/x^3)^(1/2)/x^6,x,method=_RETURNVERBOSE)
 

Output:

2/7*(a*x^3+b)*(4*a*x^3-b)/b^2/x^5/((a*x^3+b)/x^3)^(1/2)-8/7*a^2/b^2*(x*(x+ 
1/2/a*(-a^2*b)^(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))*(x+1/2/a*(-a^2*b)^(1/ 
3)-1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))+(1/2/a*(-a^2*b)^(1/3)-1/2*I*3^(1/2)/a*( 
-a^2*b)^(1/3))*((-3/2/a*(-a^2*b)^(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))*x/( 
-1/2/a*(-a^2*b)^(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))/(x-1/a*(-a^2*b)^(1/3 
)))^(1/2)*(x-1/a*(-a^2*b)^(1/3))^2*(1/a*(-a^2*b)^(1/3)*(x+1/2/a*(-a^2*b)^( 
1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))/(-1/2/a*(-a^2*b)^(1/3)-1/2*I*3^(1/2)/ 
a*(-a^2*b)^(1/3))/(x-1/a*(-a^2*b)^(1/3)))^(1/2)*(1/a*(-a^2*b)^(1/3)*(x+1/2 
/a*(-a^2*b)^(1/3)-1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))/(-1/2/a*(-a^2*b)^(1/3)+1 
/2*I*3^(1/2)/a*(-a^2*b)^(1/3))/(x-1/a*(-a^2*b)^(1/3)))^(1/2)*(((-1/2/a*(-a 
^2*b)^(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))/a*(-a^2*b)^(1/3)+1/a^2*(-a^2*b 
)^(2/3))/(-3/2/a*(-a^2*b)^(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))*a/(-a^2*b) 
^(1/3)*EllipticF(((-3/2/a*(-a^2*b)^(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))*x 
/(-1/2/a*(-a^2*b)^(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))/(x-1/a*(-a^2*b)^(1 
/3)))^(1/2),((3/2/a*(-a^2*b)^(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))*(1/2/a* 
(-a^2*b)^(1/3)-1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))/(1/2/a*(-a^2*b)^(1/3)+1/2*I 
*3^(1/2)/a*(-a^2*b)^(1/3))/(3/2/a*(-a^2*b)^(1/3)-1/2*I*3^(1/2)/a*(-a^2*b)^ 
(1/3)))^(1/2))+(1/2/a*(-a^2*b)^(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))*Ellip 
ticE(((-3/2/a*(-a^2*b)^(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))*x/(-1/2/a*(-a 
^2*b)^(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))/(x-1/a*(-a^2*b)^(1/3)))^(1/...
 

Fricas [A] (verification not implemented)

Time = 0.07 (sec) , antiderivative size = 52, normalized size of antiderivative = 0.10 \[ \int \frac {1}{\sqrt {a+\frac {b}{x^3}} x^6} \, dx=-\frac {2 \, {\left (4 \, a \sqrt {b} x^{2} {\rm weierstrassZeta}\left (0, -\frac {4 \, a}{b}, {\rm weierstrassPInverse}\left (0, -\frac {4 \, a}{b}, \frac {1}{x}\right )\right ) + b \sqrt {\frac {a x^{3} + b}{x^{3}}}\right )}}{7 \, b^{2} x^{2}} \] Input:

integrate(1/(a+b/x^3)^(1/2)/x^6,x, algorithm="fricas")
 

Output:

-2/7*(4*a*sqrt(b)*x^2*weierstrassZeta(0, -4*a/b, weierstrassPInverse(0, -4 
*a/b, 1/x)) + b*sqrt((a*x^3 + b)/x^3))/(b^2*x^2)
 

Sympy [A] (verification not implemented)

Time = 0.74 (sec) , antiderivative size = 39, normalized size of antiderivative = 0.08 \[ \int \frac {1}{\sqrt {a+\frac {b}{x^3}} x^6} \, dx=- \frac {\Gamma \left (\frac {5}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, \frac {5}{3} \\ \frac {8}{3} \end {matrix}\middle | {\frac {b e^{i \pi }}{a x^{3}}} \right )}}{3 \sqrt {a} x^{5} \Gamma \left (\frac {8}{3}\right )} \] Input:

integrate(1/(a+b/x**3)**(1/2)/x**6,x)
 

Output:

-gamma(5/3)*hyper((1/2, 5/3), (8/3,), b*exp_polar(I*pi)/(a*x**3))/(3*sqrt( 
a)*x**5*gamma(8/3))
 

Maxima [F]

\[ \int \frac {1}{\sqrt {a+\frac {b}{x^3}} x^6} \, dx=\int { \frac {1}{\sqrt {a + \frac {b}{x^{3}}} x^{6}} \,d x } \] Input:

integrate(1/(a+b/x^3)^(1/2)/x^6,x, algorithm="maxima")
 

Output:

integrate(1/(sqrt(a + b/x^3)*x^6), x)
 

Giac [F]

\[ \int \frac {1}{\sqrt {a+\frac {b}{x^3}} x^6} \, dx=\int { \frac {1}{\sqrt {a + \frac {b}{x^{3}}} x^{6}} \,d x } \] Input:

integrate(1/(a+b/x^3)^(1/2)/x^6,x, algorithm="giac")
 

Output:

integrate(1/(sqrt(a + b/x^3)*x^6), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt {a+\frac {b}{x^3}} x^6} \, dx=\int \frac {1}{x^6\,\sqrt {a+\frac {b}{x^3}}} \,d x \] Input:

int(1/(x^6*(a + b/x^3)^(1/2)),x)
 

Output:

int(1/(x^6*(a + b/x^3)^(1/2)), x)
 

Reduce [F]

\[ \int \frac {1}{\sqrt {a+\frac {b}{x^3}} x^6} \, dx=\int \frac {\sqrt {x}\, \sqrt {a \,x^{3}+b}}{a \,x^{8}+b \,x^{5}}d x \] Input:

int(1/(a+b/x^3)^(1/2)/x^6,x)
 

Output:

int((sqrt(x)*sqrt(a*x**3 + b))/(a*x**8 + b*x**5),x)