\(\int \frac {x^7}{(a+\frac {b}{x^3})^{3/2}} \, dx\) [507]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [F]
Sympy [A] (verification not implemented)
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 15, antiderivative size = 315 \[ \int \frac {x^7}{\left (a+\frac {b}{x^3}\right )^{3/2}} \, dx=\frac {1729 b^2 \sqrt {a+\frac {b}{x^3}} x^2}{960 a^4}-\frac {247 b \sqrt {a+\frac {b}{x^3}} x^5}{240 a^3}-\frac {2 x^8}{3 a \sqrt {a+\frac {b}{x^3}}}+\frac {19 \sqrt {a+\frac {b}{x^3}} x^8}{24 a^2}+\frac {1729 \sqrt {2+\sqrt {3}} b^{8/3} \left (\sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right ) \sqrt {\frac {a^{2/3}+\frac {b^{2/3}}{x^2}-\frac {\sqrt [3]{a} \sqrt [3]{b}}{x}}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}}{\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}}\right ),-7-4 \sqrt {3}\right )}{960 \sqrt [4]{3} a^4 \sqrt {a+\frac {b}{x^3}} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )^2}}} \] Output:

1729/960*b^2*(a+b/x^3)^(1/2)*x^2/a^4-247/240*b*(a+b/x^3)^(1/2)*x^5/a^3-2/3 
*x^8/a/(a+b/x^3)^(1/2)+19/24*(a+b/x^3)^(1/2)*x^8/a^2+1729/2880*(1/2*6^(1/2 
)+1/2*2^(1/2))*b^(8/3)*(a^(1/3)+b^(1/3)/x)*((a^(2/3)+b^(2/3)/x^2-a^(1/3)*b 
^(1/3)/x)/((1+3^(1/2))*a^(1/3)+b^(1/3)/x)^2)^(1/2)*EllipticF(((1-3^(1/2))* 
a^(1/3)+b^(1/3)/x)/((1+3^(1/2))*a^(1/3)+b^(1/3)/x),I*3^(1/2)+2*I)*3^(3/4)/ 
a^4/(a+b/x^3)^(1/2)/(a^(1/3)*(a^(1/3)+b^(1/3)/x)/((1+3^(1/2))*a^(1/3)+b^(1 
/3)/x)^2)^(1/2)
                                                                                    
                                                                                    
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.04 (sec) , antiderivative size = 91, normalized size of antiderivative = 0.29 \[ \int \frac {x^7}{\left (a+\frac {b}{x^3}\right )^{3/2}} \, dx=\frac {1729 b^3+741 a b^2 x^3-228 a^2 b x^6+120 a^3 x^9-1729 b^3 \sqrt {1+\frac {a x^3}{b}} \operatorname {Hypergeometric2F1}\left (\frac {1}{6},\frac {1}{2},\frac {7}{6},-\frac {a x^3}{b}\right )}{960 a^4 \sqrt {a+\frac {b}{x^3}} x} \] Input:

Integrate[x^7/(a + b/x^3)^(3/2),x]
 

Output:

(1729*b^3 + 741*a*b^2*x^3 - 228*a^2*b*x^6 + 120*a^3*x^9 - 1729*b^3*Sqrt[1 
+ (a*x^3)/b]*Hypergeometric2F1[1/6, 1/2, 7/6, -((a*x^3)/b)])/(960*a^4*Sqrt 
[a + b/x^3]*x)
 

Rubi [A] (verified)

Time = 0.60 (sec) , antiderivative size = 337, normalized size of antiderivative = 1.07, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {858, 819, 847, 847, 847, 759}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^7}{\left (a+\frac {b}{x^3}\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 858

\(\displaystyle -\int \frac {x^9}{\left (a+\frac {b}{x^3}\right )^{3/2}}d\frac {1}{x}\)

\(\Big \downarrow \) 819

\(\displaystyle -\frac {19 \int \frac {x^9}{\sqrt {a+\frac {b}{x^3}}}d\frac {1}{x}}{3 a}-\frac {2 x^8}{3 a \sqrt {a+\frac {b}{x^3}}}\)

\(\Big \downarrow \) 847

\(\displaystyle -\frac {19 \left (-\frac {13 b \int \frac {x^6}{\sqrt {a+\frac {b}{x^3}}}d\frac {1}{x}}{16 a}-\frac {x^8 \sqrt {a+\frac {b}{x^3}}}{8 a}\right )}{3 a}-\frac {2 x^8}{3 a \sqrt {a+\frac {b}{x^3}}}\)

\(\Big \downarrow \) 847

\(\displaystyle -\frac {19 \left (-\frac {13 b \left (-\frac {7 b \int \frac {x^3}{\sqrt {a+\frac {b}{x^3}}}d\frac {1}{x}}{10 a}-\frac {x^5 \sqrt {a+\frac {b}{x^3}}}{5 a}\right )}{16 a}-\frac {x^8 \sqrt {a+\frac {b}{x^3}}}{8 a}\right )}{3 a}-\frac {2 x^8}{3 a \sqrt {a+\frac {b}{x^3}}}\)

\(\Big \downarrow \) 847

\(\displaystyle -\frac {19 \left (-\frac {13 b \left (-\frac {7 b \left (-\frac {b \int \frac {1}{\sqrt {a+\frac {b}{x^3}}}d\frac {1}{x}}{4 a}-\frac {x^2 \sqrt {a+\frac {b}{x^3}}}{2 a}\right )}{10 a}-\frac {x^5 \sqrt {a+\frac {b}{x^3}}}{5 a}\right )}{16 a}-\frac {x^8 \sqrt {a+\frac {b}{x^3}}}{8 a}\right )}{3 a}-\frac {2 x^8}{3 a \sqrt {a+\frac {b}{x^3}}}\)

\(\Big \downarrow \) 759

\(\displaystyle -\frac {19 \left (-\frac {13 b \left (-\frac {7 b \left (-\frac {\sqrt {2+\sqrt {3}} b^{2/3} \left (\sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right ) \sqrt {\frac {a^{2/3}-\frac {\sqrt [3]{a} \sqrt [3]{b}}{x}+\frac {b^{2/3}}{x^2}}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}}{\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}}\right ),-7-4 \sqrt {3}\right )}{2 \sqrt [4]{3} a \sqrt {a+\frac {b}{x^3}} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )^2}}}-\frac {x^2 \sqrt {a+\frac {b}{x^3}}}{2 a}\right )}{10 a}-\frac {x^5 \sqrt {a+\frac {b}{x^3}}}{5 a}\right )}{16 a}-\frac {x^8 \sqrt {a+\frac {b}{x^3}}}{8 a}\right )}{3 a}-\frac {2 x^8}{3 a \sqrt {a+\frac {b}{x^3}}}\)

Input:

Int[x^7/(a + b/x^3)^(3/2),x]
 

Output:

(-2*x^8)/(3*a*Sqrt[a + b/x^3]) - (19*(-1/8*(Sqrt[a + b/x^3]*x^8)/a - (13*b 
*(-1/5*(Sqrt[a + b/x^3]*x^5)/a - (7*b*(-1/2*(Sqrt[a + b/x^3]*x^2)/a - (Sqr 
t[2 + Sqrt[3]]*b^(2/3)*(a^(1/3) + b^(1/3)/x)*Sqrt[(a^(2/3) + b^(2/3)/x^2 - 
 (a^(1/3)*b^(1/3))/x)/((1 + Sqrt[3])*a^(1/3) + b^(1/3)/x)^2]*EllipticF[Arc 
Sin[((1 - Sqrt[3])*a^(1/3) + b^(1/3)/x)/((1 + Sqrt[3])*a^(1/3) + b^(1/3)/x 
)], -7 - 4*Sqrt[3]])/(2*3^(1/4)*a*Sqrt[a + b/x^3]*Sqrt[(a^(1/3)*(a^(1/3) + 
 b^(1/3)/x))/((1 + Sqrt[3])*a^(1/3) + b^(1/3)/x)^2])))/(10*a)))/(16*a)))/( 
3*a)
 

Defintions of rubi rules used

rule 759
Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], 
s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt[2 + Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s 
*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[s* 
((s + r*x)/((1 + Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 - Sqrt[3])*s 
+ r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x] & 
& PosQ[a]
 

rule 819
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(-( 
c*x)^(m + 1))*((a + b*x^n)^(p + 1)/(a*c*n*(p + 1))), x] + Simp[(m + n*(p + 
1) + 1)/(a*n*(p + 1))   Int[(c*x)^m*(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a 
, b, c, m}, x] && IGtQ[n, 0] && LtQ[p, -1] && IntBinomialQ[a, b, c, n, m, p 
, x]
 

rule 847
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c*x 
)^(m + 1)*((a + b*x^n)^(p + 1)/(a*c*(m + 1))), x] - Simp[b*((m + n*(p + 1) 
+ 1)/(a*c^n*(m + 1)))   Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; FreeQ[{a 
, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p 
, x]
 

rule 858
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Subst[Int[(a + 
b/x^n)^p/x^(m + 2), x], x, 1/x] /; FreeQ[{a, b, p}, x] && ILtQ[n, 0] && Int 
egerQ[m]
 
Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 1453 vs. \(2 (244 ) = 488\).

Time = 4.17 (sec) , antiderivative size = 1454, normalized size of antiderivative = 4.62

method result size
risch \(\text {Expression too large to display}\) \(1454\)
default \(\text {Expression too large to display}\) \(2540\)

Input:

int(x^7/(a+b/x^3)^(3/2),x,method=_RETURNVERBOSE)
 

Output:

1/320*(40*a^2*x^6-116*a*b*x^3+363*b^2)/a^4/x*(a*x^3+b)/((a*x^3+b)/x^3)^(1/ 
2)-1/640/a^4*b^3*(2006*(1/2/a*(-a^2*b)^(1/3)-1/2*I*3^(1/2)/a*(-a^2*b)^(1/3 
))*((-3/2/a*(-a^2*b)^(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))*x/(-1/2/a*(-a^2 
*b)^(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))/(x-1/a*(-a^2*b)^(1/3)))^(1/2)*(x 
-1/a*(-a^2*b)^(1/3))^2*(1/a*(-a^2*b)^(1/3)*(x+1/2/a*(-a^2*b)^(1/3)+1/2*I*3 
^(1/2)/a*(-a^2*b)^(1/3))/(-1/2/a*(-a^2*b)^(1/3)-1/2*I*3^(1/2)/a*(-a^2*b)^( 
1/3))/(x-1/a*(-a^2*b)^(1/3)))^(1/2)*(1/a*(-a^2*b)^(1/3)*(x+1/2/a*(-a^2*b)^ 
(1/3)-1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))/(-1/2/a*(-a^2*b)^(1/3)+1/2*I*3^(1/2) 
/a*(-a^2*b)^(1/3))/(x-1/a*(-a^2*b)^(1/3)))^(1/2)/(-3/2/a*(-a^2*b)^(1/3)+1/ 
2*I*3^(1/2)/a*(-a^2*b)^(1/3))*a/(-a^2*b)^(1/3)/(a*x*(x-1/a*(-a^2*b)^(1/3)) 
*(x+1/2/a*(-a^2*b)^(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))*(x+1/2/a*(-a^2*b) 
^(1/3)-1/2*I*3^(1/2)/a*(-a^2*b)^(1/3)))^(1/2)*EllipticF(((-3/2/a*(-a^2*b)^ 
(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))*x/(-1/2/a*(-a^2*b)^(1/3)+1/2*I*3^(1/ 
2)/a*(-a^2*b)^(1/3))/(x-1/a*(-a^2*b)^(1/3)))^(1/2),((3/2/a*(-a^2*b)^(1/3)+ 
1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))*(1/2/a*(-a^2*b)^(1/3)-1/2*I*3^(1/2)/a*(-a^ 
2*b)^(1/3))/(1/2/a*(-a^2*b)^(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))/(3/2/a*( 
-a^2*b)^(1/3)-1/2*I*3^(1/2)/a*(-a^2*b)^(1/3)))^(1/2))-640*b*(2/3*x/b/((x^3 
+b/a)*a*x)^(1/2)+4/3/b*(1/2/a*(-a^2*b)^(1/3)-1/2*I*3^(1/2)/a*(-a^2*b)^(1/3 
))*((-3/2/a*(-a^2*b)^(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))*x/(-1/2/a*(-a^2 
*b)^(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))/(x-1/a*(-a^2*b)^(1/3)))^(1/2)...
 

Fricas [F]

\[ \int \frac {x^7}{\left (a+\frac {b}{x^3}\right )^{3/2}} \, dx=\int { \frac {x^{7}}{{\left (a + \frac {b}{x^{3}}\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(x^7/(a+b/x^3)^(3/2),x, algorithm="fricas")
 

Output:

integral(x^13*sqrt((a*x^3 + b)/x^3)/(a^2*x^6 + 2*a*b*x^3 + b^2), x)
 

Sympy [A] (verification not implemented)

Time = 0.84 (sec) , antiderivative size = 46, normalized size of antiderivative = 0.15 \[ \int \frac {x^7}{\left (a+\frac {b}{x^3}\right )^{3/2}} \, dx=- \frac {x^{8} \Gamma \left (- \frac {8}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {8}{3}, \frac {3}{2} \\ - \frac {5}{3} \end {matrix}\middle | {\frac {b e^{i \pi }}{a x^{3}}} \right )}}{3 a^{\frac {3}{2}} \Gamma \left (- \frac {5}{3}\right )} \] Input:

integrate(x**7/(a+b/x**3)**(3/2),x)
 

Output:

-x**8*gamma(-8/3)*hyper((-8/3, 3/2), (-5/3,), b*exp_polar(I*pi)/(a*x**3))/ 
(3*a**(3/2)*gamma(-5/3))
 

Maxima [F]

\[ \int \frac {x^7}{\left (a+\frac {b}{x^3}\right )^{3/2}} \, dx=\int { \frac {x^{7}}{{\left (a + \frac {b}{x^{3}}\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(x^7/(a+b/x^3)^(3/2),x, algorithm="maxima")
 

Output:

integrate(x^7/(a + b/x^3)^(3/2), x)
 

Giac [F]

\[ \int \frac {x^7}{\left (a+\frac {b}{x^3}\right )^{3/2}} \, dx=\int { \frac {x^{7}}{{\left (a + \frac {b}{x^{3}}\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(x^7/(a+b/x^3)^(3/2),x, algorithm="giac")
 

Output:

integrate(x^7/(a + b/x^3)^(3/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {x^7}{\left (a+\frac {b}{x^3}\right )^{3/2}} \, dx=\int \frac {x^7}{{\left (a+\frac {b}{x^3}\right )}^{3/2}} \,d x \] Input:

int(x^7/(a + b/x^3)^(3/2),x)
 

Output:

int(x^7/(a + b/x^3)^(3/2), x)
 

Reduce [F]

\[ \int \frac {x^7}{\left (a+\frac {b}{x^3}\right )^{3/2}} \, dx=\frac {160 \sqrt {x}\, \sqrt {a \,x^{3}+b}\, a^{3} x^{9}-304 \sqrt {x}\, \sqrt {a \,x^{3}+b}\, a^{2} b \,x^{6}+988 \sqrt {x}\, \sqrt {a \,x^{3}+b}\, a \,b^{2} x^{3}+3458 \sqrt {x}\, \sqrt {a \,x^{3}+b}\, b^{3}-1729 \left (\int \frac {\sqrt {x}\, \sqrt {a \,x^{3}+b}}{a^{2} x^{7}+2 a b \,x^{4}+b^{2} x}d x \right ) a \,b^{4} x^{3}-1729 \left (\int \frac {\sqrt {x}\, \sqrt {a \,x^{3}+b}}{a^{2} x^{7}+2 a b \,x^{4}+b^{2} x}d x \right ) b^{5}}{1280 a^{4} \left (a \,x^{3}+b \right )} \] Input:

int(x^7/(a+b/x^3)^(3/2),x)
                                                                                    
                                                                                    
 

Output:

(160*sqrt(x)*sqrt(a*x**3 + b)*a**3*x**9 - 304*sqrt(x)*sqrt(a*x**3 + b)*a** 
2*b*x**6 + 988*sqrt(x)*sqrt(a*x**3 + b)*a*b**2*x**3 + 3458*sqrt(x)*sqrt(a* 
x**3 + b)*b**3 - 1729*int((sqrt(x)*sqrt(a*x**3 + b))/(a**2*x**7 + 2*a*b*x* 
*4 + b**2*x),x)*a*b**4*x**3 - 1729*int((sqrt(x)*sqrt(a*x**3 + b))/(a**2*x* 
*7 + 2*a*b*x**4 + b**2*x),x)*b**5)/(1280*a**4*(a*x**3 + b))