\(\int \frac {1}{(a+b \sqrt {x})^8 x} \, dx\) [119]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [B] (verification not implemented)
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 15, antiderivative size = 143 \[ \int \frac {1}{\left (a+b \sqrt {x}\right )^8 x} \, dx=\frac {2}{7 a \left (a+b \sqrt {x}\right )^7}+\frac {1}{3 a^2 \left (a+b \sqrt {x}\right )^6}+\frac {2}{5 a^3 \left (a+b \sqrt {x}\right )^5}+\frac {1}{2 a^4 \left (a+b \sqrt {x}\right )^4}+\frac {2}{3 a^5 \left (a+b \sqrt {x}\right )^3}+\frac {1}{a^6 \left (a+b \sqrt {x}\right )^2}+\frac {2}{a^7 \left (a+b \sqrt {x}\right )}-\frac {2 \log \left (a+b \sqrt {x}\right )}{a^8}+\frac {\log (x)}{a^8} \] Output:

2/7/a/(a+b*x^(1/2))^7+1/3/a^2/(a+b*x^(1/2))^6+2/5/a^3/(a+b*x^(1/2))^5+1/2/ 
a^4/(a+b*x^(1/2))^4+2/3/a^5/(a+b*x^(1/2))^3+1/a^6/(a+b*x^(1/2))^2+2/a^7/(a 
+b*x^(1/2))-2*ln(a+b*x^(1/2))/a^8+ln(x)/a^8
 

Mathematica [A] (verified)

Time = 0.12 (sec) , antiderivative size = 106, normalized size of antiderivative = 0.74 \[ \int \frac {1}{\left (a+b \sqrt {x}\right )^8 x} \, dx=\frac {\frac {a \left (1089 a^6+4683 a^5 b \sqrt {x}+9639 a^4 b^2 x+11165 a^3 b^3 x^{3/2}+7490 a^2 b^4 x^2+2730 a b^5 x^{5/2}+420 b^6 x^3\right )}{\left (a+b \sqrt {x}\right )^7}-420 \log \left (a+b \sqrt {x}\right )+210 \log (x)}{210 a^8} \] Input:

Integrate[1/((a + b*Sqrt[x])^8*x),x]
 

Output:

((a*(1089*a^6 + 4683*a^5*b*Sqrt[x] + 9639*a^4*b^2*x + 11165*a^3*b^3*x^(3/2 
) + 7490*a^2*b^4*x^2 + 2730*a*b^5*x^(5/2) + 420*b^6*x^3))/(a + b*Sqrt[x])^ 
7 - 420*Log[a + b*Sqrt[x]] + 210*Log[x])/(210*a^8)
 

Rubi [A] (verified)

Time = 0.47 (sec) , antiderivative size = 151, normalized size of antiderivative = 1.06, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {798, 54, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{x \left (a+b \sqrt {x}\right )^8} \, dx\)

\(\Big \downarrow \) 798

\(\displaystyle 2 \int \frac {1}{\left (a+b \sqrt {x}\right )^8 \sqrt {x}}d\sqrt {x}\)

\(\Big \downarrow \) 54

\(\displaystyle 2 \int \left (-\frac {b}{a^8 \left (a+b \sqrt {x}\right )}-\frac {b}{a^7 \left (a+b \sqrt {x}\right )^2}-\frac {b}{a^6 \left (a+b \sqrt {x}\right )^3}-\frac {b}{a^5 \left (a+b \sqrt {x}\right )^4}-\frac {b}{a^4 \left (a+b \sqrt {x}\right )^5}-\frac {b}{a^3 \left (a+b \sqrt {x}\right )^6}-\frac {b}{a^2 \left (a+b \sqrt {x}\right )^7}-\frac {b}{a \left (a+b \sqrt {x}\right )^8}+\frac {1}{a^8 \sqrt {x}}\right )d\sqrt {x}\)

\(\Big \downarrow \) 2009

\(\displaystyle 2 \left (-\frac {\log \left (a+b \sqrt {x}\right )}{a^8}+\frac {\log \left (\sqrt {x}\right )}{a^8}+\frac {1}{a^7 \left (a+b \sqrt {x}\right )}+\frac {1}{2 a^6 \left (a+b \sqrt {x}\right )^2}+\frac {1}{3 a^5 \left (a+b \sqrt {x}\right )^3}+\frac {1}{4 a^4 \left (a+b \sqrt {x}\right )^4}+\frac {1}{5 a^3 \left (a+b \sqrt {x}\right )^5}+\frac {1}{6 a^2 \left (a+b \sqrt {x}\right )^6}+\frac {1}{7 a \left (a+b \sqrt {x}\right )^7}\right )\)

Input:

Int[1/((a + b*Sqrt[x])^8*x),x]
 

Output:

2*(1/(7*a*(a + b*Sqrt[x])^7) + 1/(6*a^2*(a + b*Sqrt[x])^6) + 1/(5*a^3*(a + 
 b*Sqrt[x])^5) + 1/(4*a^4*(a + b*Sqrt[x])^4) + 1/(3*a^5*(a + b*Sqrt[x])^3) 
 + 1/(2*a^6*(a + b*Sqrt[x])^2) + 1/(a^7*(a + b*Sqrt[x])) - Log[a + b*Sqrt[ 
x]]/a^8 + Log[Sqrt[x]]/a^8)
 

Defintions of rubi rules used

rule 54
Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[E 
xpandIntegrand[(a + b*x)^m*(c + d*x)^n, x], x] /; FreeQ[{a, b, c, d}, x] && 
 ILtQ[m, 0] && IntegerQ[n] &&  !(IGtQ[n, 0] && LtQ[m + n + 2, 0])
 

rule 798
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[1/n   Subst 
[Int[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p, x], x, x^n], x] /; FreeQ[{a, 
b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 
Maple [A] (verified)

Time = 0.46 (sec) , antiderivative size = 118, normalized size of antiderivative = 0.83

method result size
derivativedivides \(\frac {2}{7 a \left (a +b \sqrt {x}\right )^{7}}+\frac {1}{3 a^{2} \left (a +b \sqrt {x}\right )^{6}}+\frac {2}{5 a^{3} \left (a +b \sqrt {x}\right )^{5}}+\frac {1}{2 a^{4} \left (a +b \sqrt {x}\right )^{4}}+\frac {2}{3 a^{5} \left (a +b \sqrt {x}\right )^{3}}+\frac {1}{a^{6} \left (a +b \sqrt {x}\right )^{2}}+\frac {2}{a^{7} \left (a +b \sqrt {x}\right )}-\frac {2 \ln \left (a +b \sqrt {x}\right )}{a^{8}}+\frac {\ln \left (x \right )}{a^{8}}\) \(118\)
default \(\frac {2}{7 a \left (a +b \sqrt {x}\right )^{7}}+\frac {1}{3 a^{2} \left (a +b \sqrt {x}\right )^{6}}+\frac {2}{5 a^{3} \left (a +b \sqrt {x}\right )^{5}}+\frac {1}{2 a^{4} \left (a +b \sqrt {x}\right )^{4}}+\frac {2}{3 a^{5} \left (a +b \sqrt {x}\right )^{3}}+\frac {1}{a^{6} \left (a +b \sqrt {x}\right )^{2}}+\frac {2}{a^{7} \left (a +b \sqrt {x}\right )}-\frac {2 \ln \left (a +b \sqrt {x}\right )}{a^{8}}+\frac {\ln \left (x \right )}{a^{8}}\) \(118\)

Input:

int(1/(a+b*x^(1/2))^8/x,x,method=_RETURNVERBOSE)
 

Output:

2/7/a/(a+b*x^(1/2))^7+1/3/a^2/(a+b*x^(1/2))^6+2/5/a^3/(a+b*x^(1/2))^5+1/2/ 
a^4/(a+b*x^(1/2))^4+2/3/a^5/(a+b*x^(1/2))^3+1/a^6/(a+b*x^(1/2))^2+2/a^7/(a 
+b*x^(1/2))-2*ln(a+b*x^(1/2))/a^8+ln(x)/a^8
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 398 vs. \(2 (117) = 234\).

Time = 0.13 (sec) , antiderivative size = 398, normalized size of antiderivative = 2.78 \[ \int \frac {1}{\left (a+b \sqrt {x}\right )^8 x} \, dx=-\frac {210 \, a^{2} b^{12} x^{6} - 1365 \, a^{4} b^{10} x^{5} + 3745 \, a^{6} b^{8} x^{4} - 5530 \, a^{8} b^{6} x^{3} + 5964 \, a^{10} b^{4} x^{2} - 273 \, a^{12} b^{2} x + 1089 \, a^{14} + 420 \, {\left (b^{14} x^{7} - 7 \, a^{2} b^{12} x^{6} + 21 \, a^{4} b^{10} x^{5} - 35 \, a^{6} b^{8} x^{4} + 35 \, a^{8} b^{6} x^{3} - 21 \, a^{10} b^{4} x^{2} + 7 \, a^{12} b^{2} x - a^{14}\right )} \log \left (b \sqrt {x} + a\right ) - 420 \, {\left (b^{14} x^{7} - 7 \, a^{2} b^{12} x^{6} + 21 \, a^{4} b^{10} x^{5} - 35 \, a^{6} b^{8} x^{4} + 35 \, a^{8} b^{6} x^{3} - 21 \, a^{10} b^{4} x^{2} + 7 \, a^{12} b^{2} x - a^{14}\right )} \log \left (\sqrt {x}\right ) - 4 \, {\left (105 \, a b^{13} x^{6} - 700 \, a^{3} b^{11} x^{5} + 1981 \, a^{5} b^{9} x^{4} - 3072 \, a^{7} b^{7} x^{3} + 2891 \, a^{9} b^{5} x^{2} - 980 \, a^{11} b^{3} x + 735 \, a^{13} b\right )} \sqrt {x}}{210 \, {\left (a^{8} b^{14} x^{7} - 7 \, a^{10} b^{12} x^{6} + 21 \, a^{12} b^{10} x^{5} - 35 \, a^{14} b^{8} x^{4} + 35 \, a^{16} b^{6} x^{3} - 21 \, a^{18} b^{4} x^{2} + 7 \, a^{20} b^{2} x - a^{22}\right )}} \] Input:

integrate(1/(a+b*x^(1/2))^8/x,x, algorithm="fricas")
 

Output:

-1/210*(210*a^2*b^12*x^6 - 1365*a^4*b^10*x^5 + 3745*a^6*b^8*x^4 - 5530*a^8 
*b^6*x^3 + 5964*a^10*b^4*x^2 - 273*a^12*b^2*x + 1089*a^14 + 420*(b^14*x^7 
- 7*a^2*b^12*x^6 + 21*a^4*b^10*x^5 - 35*a^6*b^8*x^4 + 35*a^8*b^6*x^3 - 21* 
a^10*b^4*x^2 + 7*a^12*b^2*x - a^14)*log(b*sqrt(x) + a) - 420*(b^14*x^7 - 7 
*a^2*b^12*x^6 + 21*a^4*b^10*x^5 - 35*a^6*b^8*x^4 + 35*a^8*b^6*x^3 - 21*a^1 
0*b^4*x^2 + 7*a^12*b^2*x - a^14)*log(sqrt(x)) - 4*(105*a*b^13*x^6 - 700*a^ 
3*b^11*x^5 + 1981*a^5*b^9*x^4 - 3072*a^7*b^7*x^3 + 2891*a^9*b^5*x^2 - 980* 
a^11*b^3*x + 735*a^13*b)*sqrt(x))/(a^8*b^14*x^7 - 7*a^10*b^12*x^6 + 21*a^1 
2*b^10*x^5 - 35*a^14*b^8*x^4 + 35*a^16*b^6*x^3 - 21*a^18*b^4*x^2 + 7*a^20* 
b^2*x - a^22)
 

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 2581 vs. \(2 (133) = 266\).

Time = 3.50 (sec) , antiderivative size = 2581, normalized size of antiderivative = 18.05 \[ \int \frac {1}{\left (a+b \sqrt {x}\right )^8 x} \, dx=\text {Too large to display} \] Input:

integrate(1/(a+b*x**(1/2))**8/x,x)
 

Output:

Piecewise((zoo/x**4, Eq(a, 0) & Eq(b, 0)), (log(x)/a**8, Eq(b, 0)), (-1/(4 
*b**8*x**4), Eq(a, 0)), (210*a**7*sqrt(x)*log(x)/(210*a**15*sqrt(x) + 1470 
*a**14*b*x + 4410*a**13*b**2*x**(3/2) + 7350*a**12*b**3*x**2 + 7350*a**11* 
b**4*x**(5/2) + 4410*a**10*b**5*x**3 + 1470*a**9*b**6*x**(7/2) + 210*a**8* 
b**7*x**4) - 420*a**7*sqrt(x)*log(a/b + sqrt(x))/(210*a**15*sqrt(x) + 1470 
*a**14*b*x + 4410*a**13*b**2*x**(3/2) + 7350*a**12*b**3*x**2 + 7350*a**11* 
b**4*x**(5/2) + 4410*a**10*b**5*x**3 + 1470*a**9*b**6*x**(7/2) + 210*a**8* 
b**7*x**4) + 1089*a**7*sqrt(x)/(210*a**15*sqrt(x) + 1470*a**14*b*x + 4410* 
a**13*b**2*x**(3/2) + 7350*a**12*b**3*x**2 + 7350*a**11*b**4*x**(5/2) + 44 
10*a**10*b**5*x**3 + 1470*a**9*b**6*x**(7/2) + 210*a**8*b**7*x**4) + 1470* 
a**6*b*x*log(x)/(210*a**15*sqrt(x) + 1470*a**14*b*x + 4410*a**13*b**2*x**( 
3/2) + 7350*a**12*b**3*x**2 + 7350*a**11*b**4*x**(5/2) + 4410*a**10*b**5*x 
**3 + 1470*a**9*b**6*x**(7/2) + 210*a**8*b**7*x**4) - 2940*a**6*b*x*log(a/ 
b + sqrt(x))/(210*a**15*sqrt(x) + 1470*a**14*b*x + 4410*a**13*b**2*x**(3/2 
) + 7350*a**12*b**3*x**2 + 7350*a**11*b**4*x**(5/2) + 4410*a**10*b**5*x**3 
 + 1470*a**9*b**6*x**(7/2) + 210*a**8*b**7*x**4) + 4683*a**6*b*x/(210*a**1 
5*sqrt(x) + 1470*a**14*b*x + 4410*a**13*b**2*x**(3/2) + 7350*a**12*b**3*x* 
*2 + 7350*a**11*b**4*x**(5/2) + 4410*a**10*b**5*x**3 + 1470*a**9*b**6*x**( 
7/2) + 210*a**8*b**7*x**4) + 4410*a**5*b**2*x**(3/2)*log(x)/(210*a**15*sqr 
t(x) + 1470*a**14*b*x + 4410*a**13*b**2*x**(3/2) + 7350*a**12*b**3*x**2...
 

Maxima [A] (verification not implemented)

Time = 0.05 (sec) , antiderivative size = 163, normalized size of antiderivative = 1.14 \[ \int \frac {1}{\left (a+b \sqrt {x}\right )^8 x} \, dx=\frac {420 \, b^{6} x^{3} + 2730 \, a b^{5} x^{\frac {5}{2}} + 7490 \, a^{2} b^{4} x^{2} + 11165 \, a^{3} b^{3} x^{\frac {3}{2}} + 9639 \, a^{4} b^{2} x + 4683 \, a^{5} b \sqrt {x} + 1089 \, a^{6}}{210 \, {\left (a^{7} b^{7} x^{\frac {7}{2}} + 7 \, a^{8} b^{6} x^{3} + 21 \, a^{9} b^{5} x^{\frac {5}{2}} + 35 \, a^{10} b^{4} x^{2} + 35 \, a^{11} b^{3} x^{\frac {3}{2}} + 21 \, a^{12} b^{2} x + 7 \, a^{13} b \sqrt {x} + a^{14}\right )}} - \frac {2 \, \log \left (b \sqrt {x} + a\right )}{a^{8}} + \frac {\log \left (x\right )}{a^{8}} \] Input:

integrate(1/(a+b*x^(1/2))^8/x,x, algorithm="maxima")
 

Output:

1/210*(420*b^6*x^3 + 2730*a*b^5*x^(5/2) + 7490*a^2*b^4*x^2 + 11165*a^3*b^3 
*x^(3/2) + 9639*a^4*b^2*x + 4683*a^5*b*sqrt(x) + 1089*a^6)/(a^7*b^7*x^(7/2 
) + 7*a^8*b^6*x^3 + 21*a^9*b^5*x^(5/2) + 35*a^10*b^4*x^2 + 35*a^11*b^3*x^( 
3/2) + 21*a^12*b^2*x + 7*a^13*b*sqrt(x) + a^14) - 2*log(b*sqrt(x) + a)/a^8 
 + log(x)/a^8
 

Giac [A] (verification not implemented)

Time = 0.13 (sec) , antiderivative size = 102, normalized size of antiderivative = 0.71 \[ \int \frac {1}{\left (a+b \sqrt {x}\right )^8 x} \, dx=-\frac {2 \, \log \left ({\left | b \sqrt {x} + a \right |}\right )}{a^{8}} + \frac {\log \left ({\left | x \right |}\right )}{a^{8}} + \frac {420 \, a b^{6} x^{3} + 2730 \, a^{2} b^{5} x^{\frac {5}{2}} + 7490 \, a^{3} b^{4} x^{2} + 11165 \, a^{4} b^{3} x^{\frac {3}{2}} + 9639 \, a^{5} b^{2} x + 4683 \, a^{6} b \sqrt {x} + 1089 \, a^{7}}{210 \, {\left (b \sqrt {x} + a\right )}^{7} a^{8}} \] Input:

integrate(1/(a+b*x^(1/2))^8/x,x, algorithm="giac")
 

Output:

-2*log(abs(b*sqrt(x) + a))/a^8 + log(abs(x))/a^8 + 1/210*(420*a*b^6*x^3 + 
2730*a^2*b^5*x^(5/2) + 7490*a^3*b^4*x^2 + 11165*a^4*b^3*x^(3/2) + 9639*a^5 
*b^2*x + 4683*a^6*b*sqrt(x) + 1089*a^7)/((b*sqrt(x) + a)^7*a^8)
 

Mupad [B] (verification not implemented)

Time = 0.47 (sec) , antiderivative size = 160, normalized size of antiderivative = 1.12 \[ \int \frac {1}{\left (a+b \sqrt {x}\right )^8 x} \, dx=\frac {\frac {363}{70\,a}+\frac {223\,b\,\sqrt {x}}{10\,a^2}+\frac {459\,b^2\,x}{10\,a^3}+\frac {107\,b^4\,x^2}{3\,a^5}+\frac {319\,b^3\,x^{3/2}}{6\,a^4}+\frac {2\,b^6\,x^3}{a^7}+\frac {13\,b^5\,x^{5/2}}{a^6}}{a^7+b^7\,x^{7/2}+21\,a^5\,b^2\,x+7\,a\,b^6\,x^3+7\,a^6\,b\,\sqrt {x}+35\,a^3\,b^4\,x^2+35\,a^4\,b^3\,x^{3/2}+21\,a^2\,b^5\,x^{5/2}}-\frac {4\,\mathrm {atanh}\left (\frac {2\,b\,\sqrt {x}}{a}+1\right )}{a^8} \] Input:

int(1/(x*(a + b*x^(1/2))^8),x)
 

Output:

(363/(70*a) + (223*b*x^(1/2))/(10*a^2) + (459*b^2*x)/(10*a^3) + (107*b^4*x 
^2)/(3*a^5) + (319*b^3*x^(3/2))/(6*a^4) + (2*b^6*x^3)/a^7 + (13*b^5*x^(5/2 
))/a^6)/(a^7 + b^7*x^(7/2) + 21*a^5*b^2*x + 7*a*b^6*x^3 + 7*a^6*b*x^(1/2) 
+ 35*a^3*b^4*x^2 + 35*a^4*b^3*x^(3/2) + 21*a^2*b^5*x^(5/2)) - (4*atanh((2* 
b*x^(1/2))/a + 1))/a^8
 

Reduce [B] (verification not implemented)

Time = 0.24 (sec) , antiderivative size = 381, normalized size of antiderivative = 2.66 \[ \int \frac {1}{\left (a+b \sqrt {x}\right )^8 x} \, dx=\frac {-2940 \sqrt {x}\, \mathrm {log}\left (\sqrt {x}\, b +a \right ) a^{6} b -14700 \sqrt {x}\, \mathrm {log}\left (\sqrt {x}\, b +a \right ) a^{4} b^{3} x -8820 \sqrt {x}\, \mathrm {log}\left (\sqrt {x}\, b +a \right ) a^{2} b^{5} x^{2}-420 \sqrt {x}\, \mathrm {log}\left (\sqrt {x}\, b +a \right ) b^{7} x^{3}+2940 \sqrt {x}\, \mathrm {log}\left (\sqrt {x}\right ) a^{6} b +14700 \sqrt {x}\, \mathrm {log}\left (\sqrt {x}\right ) a^{4} b^{3} x +8820 \sqrt {x}\, \mathrm {log}\left (\sqrt {x}\right ) a^{2} b^{5} x^{2}+420 \sqrt {x}\, \mathrm {log}\left (\sqrt {x}\right ) b^{7} x^{3}+4263 \sqrt {x}\, a^{6} b +9065 \sqrt {x}\, a^{4} b^{3} x +1470 \sqrt {x}\, a^{2} b^{5} x^{2}-60 \sqrt {x}\, b^{7} x^{3}-420 \,\mathrm {log}\left (\sqrt {x}\, b +a \right ) a^{7}-8820 \,\mathrm {log}\left (\sqrt {x}\, b +a \right ) a^{5} b^{2} x -14700 \,\mathrm {log}\left (\sqrt {x}\, b +a \right ) a^{3} b^{4} x^{2}-2940 \,\mathrm {log}\left (\sqrt {x}\, b +a \right ) a \,b^{6} x^{3}+420 \,\mathrm {log}\left (\sqrt {x}\right ) a^{7}+8820 \,\mathrm {log}\left (\sqrt {x}\right ) a^{5} b^{2} x +14700 \,\mathrm {log}\left (\sqrt {x}\right ) a^{3} b^{4} x^{2}+2940 \,\mathrm {log}\left (\sqrt {x}\right ) a \,b^{6} x^{3}+1029 a^{7}+8379 a^{5} b^{2} x +5390 a^{3} b^{4} x^{2}}{210 a^{8} \left (7 \sqrt {x}\, a^{6} b +35 \sqrt {x}\, a^{4} b^{3} x +21 \sqrt {x}\, a^{2} b^{5} x^{2}+\sqrt {x}\, b^{7} x^{3}+a^{7}+21 a^{5} b^{2} x +35 a^{3} b^{4} x^{2}+7 a \,b^{6} x^{3}\right )} \] Input:

int(1/(a+b*x^(1/2))^8/x,x)
 

Output:

( - 2940*sqrt(x)*log(sqrt(x)*b + a)*a**6*b - 14700*sqrt(x)*log(sqrt(x)*b + 
 a)*a**4*b**3*x - 8820*sqrt(x)*log(sqrt(x)*b + a)*a**2*b**5*x**2 - 420*sqr 
t(x)*log(sqrt(x)*b + a)*b**7*x**3 + 2940*sqrt(x)*log(sqrt(x))*a**6*b + 147 
00*sqrt(x)*log(sqrt(x))*a**4*b**3*x + 8820*sqrt(x)*log(sqrt(x))*a**2*b**5* 
x**2 + 420*sqrt(x)*log(sqrt(x))*b**7*x**3 + 4263*sqrt(x)*a**6*b + 9065*sqr 
t(x)*a**4*b**3*x + 1470*sqrt(x)*a**2*b**5*x**2 - 60*sqrt(x)*b**7*x**3 - 42 
0*log(sqrt(x)*b + a)*a**7 - 8820*log(sqrt(x)*b + a)*a**5*b**2*x - 14700*lo 
g(sqrt(x)*b + a)*a**3*b**4*x**2 - 2940*log(sqrt(x)*b + a)*a*b**6*x**3 + 42 
0*log(sqrt(x))*a**7 + 8820*log(sqrt(x))*a**5*b**2*x + 14700*log(sqrt(x))*a 
**3*b**4*x**2 + 2940*log(sqrt(x))*a*b**6*x**3 + 1029*a**7 + 8379*a**5*b**2 
*x + 5390*a**3*b**4*x**2)/(210*a**8*(7*sqrt(x)*a**6*b + 35*sqrt(x)*a**4*b* 
*3*x + 21*sqrt(x)*a**2*b**5*x**2 + sqrt(x)*b**7*x**3 + a**7 + 21*a**5*b**2 
*x + 35*a**3*b**4*x**2 + 7*a*b**6*x**3))