\(\int \frac {x^{-1-\frac {n}{4}}}{a+b x^n} \, dx\) [501]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [C] (verification not implemented)
Sympy [C] (verification not implemented)
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 19, antiderivative size = 172 \[ \int \frac {x^{-1-\frac {n}{4}}}{a+b x^n} \, dx=-\frac {4 x^{-n/4}}{a n}-\frac {\sqrt {2} \sqrt [4]{b} \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{a} x^{-n/4}}{\sqrt [4]{b}}\right )}{a^{5/4} n}+\frac {\sqrt {2} \sqrt [4]{b} \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{a} x^{-n/4}}{\sqrt [4]{b}}\right )}{a^{5/4} n}+\frac {\sqrt {2} \sqrt [4]{b} \text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} x^{-n/4}}{\sqrt {b}+\sqrt {a} x^{-n/2}}\right )}{a^{5/4} n} \] Output:

-4/a/n/(x^(1/4*n))-2^(1/2)*b^(1/4)*arctan(1-2^(1/2)*a^(1/4)/b^(1/4)/(x^(1/ 
4*n)))/a^(5/4)/n+2^(1/2)*b^(1/4)*arctan(1+2^(1/2)*a^(1/4)/b^(1/4)/(x^(1/4* 
n)))/a^(5/4)/n+2^(1/2)*b^(1/4)*arctanh(2^(1/2)*a^(1/4)*b^(1/4)/(x^(1/4*n)) 
/(b^(1/2)+a^(1/2)/(x^(1/2*n))))/a^(5/4)/n
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.03 (sec) , antiderivative size = 32, normalized size of antiderivative = 0.19 \[ \int \frac {x^{-1-\frac {n}{4}}}{a+b x^n} \, dx=-\frac {4 x^{-n/4} \operatorname {Hypergeometric2F1}\left (-\frac {1}{4},1,\frac {3}{4},-\frac {b x^n}{a}\right )}{a n} \] Input:

Integrate[x^(-1 - n/4)/(a + b*x^n),x]
 

Output:

(-4*Hypergeometric2F1[-1/4, 1, 3/4, -((b*x^n)/a)])/(a*n*x^(n/4))
 

Rubi [A] (verified)

Time = 0.76 (sec) , antiderivative size = 255, normalized size of antiderivative = 1.48, number of steps used = 12, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.579, Rules used = {868, 772, 843, 755, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^{-\frac {n}{4}-1}}{a+b x^n} \, dx\)

\(\Big \downarrow \) 868

\(\displaystyle -\frac {4 \int \frac {1}{b x^n+a}dx^{-n/4}}{n}\)

\(\Big \downarrow \) 772

\(\displaystyle -\frac {4 \int \frac {x^{-n}}{a x^{-n}+b}dx^{-n/4}}{n}\)

\(\Big \downarrow \) 843

\(\displaystyle -\frac {4 \left (\frac {x^{-n/4}}{a}-\frac {b \int \frac {1}{a x^{-n}+b}dx^{-n/4}}{a}\right )}{n}\)

\(\Big \downarrow \) 755

\(\displaystyle -\frac {4 \left (\frac {x^{-n/4}}{a}-\frac {b \left (\frac {\int \frac {\sqrt {b}-\sqrt {a} x^{-n/2}}{a x^{-n}+b}dx^{-n/4}}{2 \sqrt {b}}+\frac {\int \frac {\sqrt {a} x^{-n/2}+\sqrt {b}}{a x^{-n}+b}dx^{-n/4}}{2 \sqrt {b}}\right )}{a}\right )}{n}\)

\(\Big \downarrow \) 1476

\(\displaystyle -\frac {4 \left (\frac {x^{-n/4}}{a}-\frac {b \left (\frac {\int \frac {\sqrt {b}-\sqrt {a} x^{-n/2}}{a x^{-n}+b}dx^{-n/4}}{2 \sqrt {b}}+\frac {\frac {\int \frac {1}{x^{-n/2}-\frac {\sqrt {2} \sqrt [4]{b} x^{-n/4}}{\sqrt [4]{a}}+\frac {\sqrt {b}}{\sqrt {a}}}dx^{-n/4}}{2 \sqrt {a}}+\frac {\int \frac {1}{x^{-n/2}+\frac {\sqrt {2} \sqrt [4]{b} x^{-n/4}}{\sqrt [4]{a}}+\frac {\sqrt {b}}{\sqrt {a}}}dx^{-n/4}}{2 \sqrt {a}}}{2 \sqrt {b}}\right )}{a}\right )}{n}\)

\(\Big \downarrow \) 1082

\(\displaystyle -\frac {4 \left (\frac {x^{-n/4}}{a}-\frac {b \left (\frac {\frac {\int \frac {1}{-x^{-n/2}-1}d\left (1-\frac {\sqrt {2} \sqrt [4]{a} x^{-n/4}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\int \frac {1}{-x^{-n/2}-1}d\left (\frac {\sqrt {2} \sqrt [4]{a} x^{-n/4}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}+\frac {\int \frac {\sqrt {b}-\sqrt {a} x^{-n/2}}{a x^{-n}+b}dx^{-n/4}}{2 \sqrt {b}}\right )}{a}\right )}{n}\)

\(\Big \downarrow \) 217

\(\displaystyle -\frac {4 \left (\frac {x^{-n/4}}{a}-\frac {b \left (\frac {\int \frac {\sqrt {b}-\sqrt {a} x^{-n/2}}{a x^{-n}+b}dx^{-n/4}}{2 \sqrt {b}}+\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{a} x^{-n/4}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{a} x^{-n/4}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}\right )}{a}\right )}{n}\)

\(\Big \downarrow \) 1479

\(\displaystyle -\frac {4 \left (\frac {x^{-n/4}}{a}-\frac {b \left (\frac {-\frac {\int -\frac {\sqrt {2} \sqrt [4]{b}-2 \sqrt [4]{a} x^{-n/4}}{\sqrt [4]{a} \left (x^{-n/2}-\frac {\sqrt {2} \sqrt [4]{b} x^{-n/4}}{\sqrt [4]{a}}+\frac {\sqrt {b}}{\sqrt {a}}\right )}dx^{-n/4}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {2} \sqrt [4]{a} x^{-n/4}+\sqrt [4]{b}\right )}{\sqrt [4]{a} \left (x^{-n/2}+\frac {\sqrt {2} \sqrt [4]{b} x^{-n/4}}{\sqrt [4]{a}}+\frac {\sqrt {b}}{\sqrt {a}}\right )}dx^{-n/4}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}+\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{a} x^{-n/4}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{a} x^{-n/4}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}\right )}{a}\right )}{n}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {4 \left (\frac {x^{-n/4}}{a}-\frac {b \left (\frac {\frac {\int \frac {\sqrt {2} \sqrt [4]{b}-2 \sqrt [4]{a} x^{-n/4}}{\sqrt [4]{a} \left (x^{-n/2}-\frac {\sqrt {2} \sqrt [4]{b} x^{-n/4}}{\sqrt [4]{a}}+\frac {\sqrt {b}}{\sqrt {a}}\right )}dx^{-n/4}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {2} \sqrt [4]{a} x^{-n/4}+\sqrt [4]{b}\right )}{\sqrt [4]{a} \left (x^{-n/2}+\frac {\sqrt {2} \sqrt [4]{b} x^{-n/4}}{\sqrt [4]{a}}+\frac {\sqrt {b}}{\sqrt {a}}\right )}dx^{-n/4}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}+\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{a} x^{-n/4}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{a} x^{-n/4}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}\right )}{a}\right )}{n}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {4 \left (\frac {x^{-n/4}}{a}-\frac {b \left (\frac {\frac {\int \frac {\sqrt {2} \sqrt [4]{b}-2 \sqrt [4]{a} x^{-n/4}}{x^{-n/2}-\frac {\sqrt {2} \sqrt [4]{b} x^{-n/4}}{\sqrt [4]{a}}+\frac {\sqrt {b}}{\sqrt {a}}}dx^{-n/4}}{2 \sqrt {2} \sqrt {a} \sqrt [4]{b}}+\frac {\int \frac {\sqrt {2} \sqrt [4]{a} x^{-n/4}+\sqrt [4]{b}}{x^{-n/2}+\frac {\sqrt {2} \sqrt [4]{b} x^{-n/4}}{\sqrt [4]{a}}+\frac {\sqrt {b}}{\sqrt {a}}}dx^{-n/4}}{2 \sqrt {a} \sqrt [4]{b}}}{2 \sqrt {b}}+\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{a} x^{-n/4}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{a} x^{-n/4}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}\right )}{a}\right )}{n}\)

\(\Big \downarrow \) 1103

\(\displaystyle -\frac {4 \left (\frac {x^{-n/4}}{a}-\frac {b \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{a} x^{-n/4}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{a} x^{-n/4}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}+\frac {\frac {\log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} x^{-n/4}+\sqrt {a} x^{-n/2}+\sqrt {b}\right )}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} x^{-n/4}+\sqrt {a} x^{-n/2}+\sqrt {b}\right )}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}\right )}{a}\right )}{n}\)

Input:

Int[x^(-1 - n/4)/(a + b*x^n),x]
 

Output:

(-4*(1/(a*x^(n/4)) - (b*((-(ArcTan[1 - (Sqrt[2]*a^(1/4))/(b^(1/4)*x^(n/4)) 
]/(Sqrt[2]*a^(1/4)*b^(1/4))) + ArcTan[1 + (Sqrt[2]*a^(1/4))/(b^(1/4)*x^(n/ 
4))]/(Sqrt[2]*a^(1/4)*b^(1/4)))/(2*Sqrt[b]) + (-1/2*Log[Sqrt[b] + Sqrt[a]/ 
x^(n/2) - (Sqrt[2]*a^(1/4)*b^(1/4))/x^(n/4)]/(Sqrt[2]*a^(1/4)*b^(1/4)) + L 
og[Sqrt[b] + Sqrt[a]/x^(n/2) + (Sqrt[2]*a^(1/4)*b^(1/4))/x^(n/4)]/(2*Sqrt[ 
2]*a^(1/4)*b^(1/4)))/(2*Sqrt[b])))/a))/n
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 755
Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2] 
], s = Denominator[Rt[a/b, 2]]}, Simp[1/(2*r)   Int[(r - s*x^2)/(a + b*x^4) 
, x], x] + Simp[1/(2*r)   Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[{a, 
 b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] & 
& AtomQ[SplitProduct[SumBaseQ, b]]))
 

rule 772
Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Int[x^(n*p)*(b + a/x^n)^p, 
x] /; FreeQ[{a, b}, x] && ILtQ[n, 0] && IntegerQ[p]
 

rule 843
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(n 
 - 1)*(c*x)^(m - n + 1)*((a + b*x^n)^(p + 1)/(b*(m + n*p + 1))), x] - Simp[ 
a*c^n*((m - n + 1)/(b*(m + n*p + 1)))   Int[(c*x)^(m - n)*(a + b*x^n)^p, x] 
, x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n* 
p + 1, 0] && IntBinomialQ[a, b, c, n, m, p, x]
 

rule 868
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[1/(m + 1) 
 Subst[Int[(a + b*x^Simplify[n/(m + 1)])^p, x], x, x^(m + 1)], x] /; FreeQ[ 
{a, b, m, n, p}, x] && IntegerQ[Simplify[n/(m + 1)]] &&  !IntegerQ[n]
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.69 (sec) , antiderivative size = 56, normalized size of antiderivative = 0.33

method result size
risch \(-\frac {4 x^{-\frac {n}{4}}}{a n}+\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (a^{5} n^{4} \textit {\_Z}^{4}+b \right )}{\sum }\textit {\_R} \ln \left (x^{\frac {n}{4}}-\frac {a^{4} n^{3} \textit {\_R}^{3}}{b}\right )\right )\) \(56\)

Input:

int(x^(-1-1/4*n)/(a+b*x^n),x,method=_RETURNVERBOSE)
 

Output:

-4/a/n/(x^(1/4*n))+sum(_R*ln(x^(1/4*n)-a^4*n^3/b*_R^3),_R=RootOf(_Z^4*a^5* 
n^4+b))
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.12 (sec) , antiderivative size = 197, normalized size of antiderivative = 1.15 \[ \int \frac {x^{-1-\frac {n}{4}}}{a+b x^n} \, dx=\frac {a n \left (-\frac {b}{a^{5} n^{4}}\right )^{\frac {1}{4}} \log \left (\frac {a n \left (-\frac {b}{a^{5} n^{4}}\right )^{\frac {1}{4}} + x x^{-\frac {1}{4} \, n - 1}}{x}\right ) - a n \left (-\frac {b}{a^{5} n^{4}}\right )^{\frac {1}{4}} \log \left (-\frac {a n \left (-\frac {b}{a^{5} n^{4}}\right )^{\frac {1}{4}} - x x^{-\frac {1}{4} \, n - 1}}{x}\right ) + i \, a n \left (-\frac {b}{a^{5} n^{4}}\right )^{\frac {1}{4}} \log \left (\frac {i \, a n \left (-\frac {b}{a^{5} n^{4}}\right )^{\frac {1}{4}} + x x^{-\frac {1}{4} \, n - 1}}{x}\right ) - i \, a n \left (-\frac {b}{a^{5} n^{4}}\right )^{\frac {1}{4}} \log \left (\frac {-i \, a n \left (-\frac {b}{a^{5} n^{4}}\right )^{\frac {1}{4}} + x x^{-\frac {1}{4} \, n - 1}}{x}\right ) - 4 \, x x^{-\frac {1}{4} \, n - 1}}{a n} \] Input:

integrate(x^(-1-1/4*n)/(a+b*x^n),x, algorithm="fricas")
 

Output:

(a*n*(-b/(a^5*n^4))^(1/4)*log((a*n*(-b/(a^5*n^4))^(1/4) + x*x^(-1/4*n - 1) 
)/x) - a*n*(-b/(a^5*n^4))^(1/4)*log(-(a*n*(-b/(a^5*n^4))^(1/4) - x*x^(-1/4 
*n - 1))/x) + I*a*n*(-b/(a^5*n^4))^(1/4)*log((I*a*n*(-b/(a^5*n^4))^(1/4) + 
 x*x^(-1/4*n - 1))/x) - I*a*n*(-b/(a^5*n^4))^(1/4)*log((-I*a*n*(-b/(a^5*n^ 
4))^(1/4) + x*x^(-1/4*n - 1))/x) - 4*x*x^(-1/4*n - 1))/(a*n)
 

Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 1.46 (sec) , antiderivative size = 265, normalized size of antiderivative = 1.54 \[ \int \frac {x^{-1-\frac {n}{4}}}{a+b x^n} \, dx=\frac {x^{- \frac {n}{4}} \Gamma \left (- \frac {1}{4}\right )}{a n \Gamma \left (\frac {3}{4}\right )} - \frac {\sqrt [4]{b} e^{- \frac {3 i \pi }{4}} \log {\left (1 - \frac {\sqrt [4]{b} x^{\frac {n}{4}} e^{\frac {i \pi }{4}}}{\sqrt [4]{a}} \right )} \Gamma \left (- \frac {1}{4}\right )}{4 a^{\frac {5}{4}} n \Gamma \left (\frac {3}{4}\right )} - \frac {i \sqrt [4]{b} e^{- \frac {3 i \pi }{4}} \log {\left (1 - \frac {\sqrt [4]{b} x^{\frac {n}{4}} e^{\frac {3 i \pi }{4}}}{\sqrt [4]{a}} \right )} \Gamma \left (- \frac {1}{4}\right )}{4 a^{\frac {5}{4}} n \Gamma \left (\frac {3}{4}\right )} + \frac {\sqrt [4]{b} e^{- \frac {3 i \pi }{4}} \log {\left (1 - \frac {\sqrt [4]{b} x^{\frac {n}{4}} e^{\frac {5 i \pi }{4}}}{\sqrt [4]{a}} \right )} \Gamma \left (- \frac {1}{4}\right )}{4 a^{\frac {5}{4}} n \Gamma \left (\frac {3}{4}\right )} + \frac {i \sqrt [4]{b} e^{- \frac {3 i \pi }{4}} \log {\left (1 - \frac {\sqrt [4]{b} x^{\frac {n}{4}} e^{\frac {7 i \pi }{4}}}{\sqrt [4]{a}} \right )} \Gamma \left (- \frac {1}{4}\right )}{4 a^{\frac {5}{4}} n \Gamma \left (\frac {3}{4}\right )} \] Input:

integrate(x**(-1-1/4*n)/(a+b*x**n),x)
 

Output:

gamma(-1/4)/(a*n*x**(n/4)*gamma(3/4)) - b**(1/4)*exp(-3*I*pi/4)*log(1 - b* 
*(1/4)*x**(n/4)*exp_polar(I*pi/4)/a**(1/4))*gamma(-1/4)/(4*a**(5/4)*n*gamm 
a(3/4)) - I*b**(1/4)*exp(-3*I*pi/4)*log(1 - b**(1/4)*x**(n/4)*exp_polar(3* 
I*pi/4)/a**(1/4))*gamma(-1/4)/(4*a**(5/4)*n*gamma(3/4)) + b**(1/4)*exp(-3* 
I*pi/4)*log(1 - b**(1/4)*x**(n/4)*exp_polar(5*I*pi/4)/a**(1/4))*gamma(-1/4 
)/(4*a**(5/4)*n*gamma(3/4)) + I*b**(1/4)*exp(-3*I*pi/4)*log(1 - b**(1/4)*x 
**(n/4)*exp_polar(7*I*pi/4)/a**(1/4))*gamma(-1/4)/(4*a**(5/4)*n*gamma(3/4) 
)
 

Maxima [F]

\[ \int \frac {x^{-1-\frac {n}{4}}}{a+b x^n} \, dx=\int { \frac {x^{-\frac {1}{4} \, n - 1}}{b x^{n} + a} \,d x } \] Input:

integrate(x^(-1-1/4*n)/(a+b*x^n),x, algorithm="maxima")
 

Output:

-b*integrate(x^(3/4*n)/(a*b*x*x^n + a^2*x), x) - 4/(a*n*x^(1/4*n))
 

Giac [F]

\[ \int \frac {x^{-1-\frac {n}{4}}}{a+b x^n} \, dx=\int { \frac {x^{-\frac {1}{4} \, n - 1}}{b x^{n} + a} \,d x } \] Input:

integrate(x^(-1-1/4*n)/(a+b*x^n),x, algorithm="giac")
 

Output:

integrate(x^(-1/4*n - 1)/(b*x^n + a), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {x^{-1-\frac {n}{4}}}{a+b x^n} \, dx=\int \frac {1}{x^{\frac {n}{4}+1}\,\left (a+b\,x^n\right )} \,d x \] Input:

int(1/(x^(n/4 + 1)*(a + b*x^n)),x)
 

Output:

int(1/(x^(n/4 + 1)*(a + b*x^n)), x)
 

Reduce [F]

\[ \int \frac {x^{-1-\frac {n}{4}}}{a+b x^n} \, dx=\int \frac {1}{x^{\frac {5 n}{4}} b x +x^{\frac {n}{4}} a x}d x \] Input:

int(x^(-1-1/4*n)/(a+b*x^n),x)
 

Output:

int(1/(x**((5*n)/4)*b*x + x**(n/4)*a*x),x)